These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
6. Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Paolella A; Faure C; Bertoni G; Marras S; Guerfi A; Darwiche A; Hovington P; Commarieu B; Wang Z; Prato M; Colombo M; Monaco S; Zhu W; Feng Z; Vijh A; George C; Demopoulos GP; Armand M; Zaghib K Nat Commun; 2017 Apr; 8():14643. PubMed ID: 28393912 [TBL] [Abstract][Full Text] [Related]
7. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314 [TBL] [Abstract][Full Text] [Related]
8. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
9. Tracking the Chemical and Structural Evolution of the TiS Zhang L; Sun D; Kang J; Wang HT; Hsieh SH; Pong WF; Bechtel HA; Feng J; Wang LW; Cairns EJ; Guo J Nano Lett; 2018 Jul; 18(7):4506-4515. PubMed ID: 29856638 [TBL] [Abstract][Full Text] [Related]
10. Promoting Rechargeable Batteries Operated at Low Temperature. Dong X; Wang YG; Xia Y Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652 [TBL] [Abstract][Full Text] [Related]
11. Construction of TiO Yu J; Tang Q; Liu Y; Zhu Y; Zhang J; Wang J; Li L J Colloid Interface Sci; 2023 Sep; 646():587-596. PubMed ID: 37210906 [TBL] [Abstract][Full Text] [Related]
12. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Xu J; Chen Y; Dai L Nat Commun; 2015 Aug; 6():8103. PubMed ID: 26311589 [TBL] [Abstract][Full Text] [Related]
13. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy. Ge A; Inoue KI; Ye S J Chem Phys; 2020 Nov; 153(17):170902. PubMed ID: 33167651 [TBL] [Abstract][Full Text] [Related]
14. Decreasing the Ion Diffusion Pathways for the Intercalation of Multivalent Cations into One-Dimensional TiS Hawkins CG; Verma A; Horbinski W; Weeks R; Mukherjee PP; Whittaker-Brooks L ACS Appl Mater Interfaces; 2020 May; 12(19):21788-21798. PubMed ID: 32243748 [TBL] [Abstract][Full Text] [Related]
15. Perspective of material evolution Induced by sinusoidal reflex charging in lithium-ion batteries. K David H; Chen PT; Yan WM; Sangeetha T; Yang CJ Heliyon; 2024 May; 10(10):e30471. PubMed ID: 38765033 [TBL] [Abstract][Full Text] [Related]
16. Efficient separation of photoexcited carriers in a g-C Xue H; Wang T; Feng Y; Gong H; Fan X; Gao B; Kong Y; Jiang C; Zhang S; Huang X; He J Nanoscale; 2020 Sep; 12(36):18742-18749. PubMed ID: 32970089 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in the Research of Photo-Assisted Lithium-Based Rechargeable Batteries. Yu X; Liu G; Wang T; Gong H; Qu H; Meng X; He J; Ye J Chemistry; 2022 Nov; 28(66):e202202104. PubMed ID: 36039771 [TBL] [Abstract][Full Text] [Related]
18. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries. Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582 [TBL] [Abstract][Full Text] [Related]
19. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy. Li N; Wang Y; Tang D; Zhou H Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640 [TBL] [Abstract][Full Text] [Related]
20. Unravelling Li He J; Tao T; Yang F; Sun Z ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]