These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 37195027)

  • 81. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae.
    Utashiro N; Williams CR; Parrish JZ; Emoto K
    Sci Rep; 2018 Jun; 8(1):8580. PubMed ID: 29872087
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.
    MaBouDi H; Shimazaki H; Giurfa M; Chittka L
    PLoS Comput Biol; 2017 Jun; 13(6):e1005551. PubMed ID: 28640825
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Calcium in Kenyon Cell Somata as a Substrate for an Olfactory Sensory Memory in
    Lüdke A; Raiser G; Nehrkorn J; Herz AVM; Galizia CG; Szyszka P
    Front Cell Neurosci; 2018; 12():128. PubMed ID: 29867361
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
    Cao LH; Yang D; Wu W; Zeng X; Jing BY; Li MT; Qin S; Tang C; Tu Y; Luo DG
    Nat Commun; 2017 Nov; 8(1):1357. PubMed ID: 29116083
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A central neural pathway controlling odor tracking in Drosophila.
    Slater G; Levy P; Chan KL; Larsen C
    J Neurosci; 2015 Feb; 35(5):1831-48. PubMed ID: 25653345
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Odorant-specific requirements for arrestin function in Drosophila olfaction.
    Merrill CE; Sherertz TM; Walker WB; Zwiebel LJ
    J Neurobiol; 2005 Apr; 63(1):15-28. PubMed ID: 15627264
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Temporal features of spike trains in the moth antennal lobe revealed by a comparative time-frequency analysis.
    Capurro A; Baroni F; Kuebler LS; Kárpáti Z; Dekker T; Lei H; Hansson BS; Pearce TC; Olsson SB
    PLoS One; 2014; 9(1):e84037. PubMed ID: 24465391
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Odor discrimination in Drosophila: from neural population codes to behavior.
    Parnas M; Lin AC; Huetteroth W; Miesenböck G
    Neuron; 2013 Sep; 79(5):932-44. PubMed ID: 24012006
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Calcium imaging revealed no modulatory effect on odor-evoked responses of the Drosophila antennal lobe by two populations of inhibitory local interneurons.
    Strube-Bloss MF; Grabe V; Hansson BS; Sachse S
    Sci Rep; 2017 Aug; 7(1):7854. PubMed ID: 28798324
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.
    Kidd S; Struhl G; Lieber T
    PLoS Genet; 2015 May; 11(5):e1005244. PubMed ID: 26011623
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Integration of chemosensory pathways in the Drosophila second-order olfactory centers.
    Tanaka NK; Awasaki T; Shimada T; Ito K
    Curr Biol; 2004 Mar; 14(6):449-57. PubMed ID: 15043809
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Spatial Receptive Fields for Odor Localization.
    Nishino H; Iwasaki M; Paoli M; Kamimura I; Yoritsune A; Mizunami M
    Curr Biol; 2018 Feb; 28(4):600-608.e3. PubMed ID: 29429617
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in
    Semelidou O; Acevedo SF; Skoulakis EM
    Elife; 2018 Dec; 7():. PubMed ID: 30576281
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Excitatory local interneurons enhance tuning of sensory information.
    Assisi C; Stopfer M; Bazhenov M
    PLoS Comput Biol; 2012; 8(7):e1002563. PubMed ID: 22807661
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Learned odor discrimination in Drosophila without combinatorial odor maps in the antennal lobe.
    DasGupta S; Waddell S
    Curr Biol; 2008 Nov; 18(21):1668-74. PubMed ID: 18951022
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Functional diversity among sensory receptors in a Drosophila olfactory circuit.
    Mathew D; Martelli C; Kelley-Swift E; Brusalis C; Gershow M; Samuel AD; Emonet T; Carlson JR
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):E2134-43. PubMed ID: 23690583
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Calcium imaging of odor-evoked responses in the Drosophila antennal lobe.
    Silbering AF; Bell R; Galizia CG; Benton R
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453204
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Olfactory coding in the turbulent realm.
    Jacob V; Monsempès C; Rospars JP; Masson JB; Lucas P
    PLoS Comput Biol; 2017 Dec; 13(12):e1005870. PubMed ID: 29194457
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Wiring variations that enable and constrain neural computation in a sensory microcircuit.
    Tobin WF; Wilson RI; Lee WA
    Elife; 2017 May; 6():. PubMed ID: 28530904
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli.
    Gorur-Shandilya S; Demir M; Long J; Clark DA; Emonet T
    Elife; 2017 Jun; 6():. PubMed ID: 28653907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.