These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A Hyperthermoactive-Cas9 Editing Tool Reveals the Role of a Unique Arsenite Methyltransferase in the Arsenic Resistance System of Thermus thermophilus HB27. Gallo G; Mougiakos I; Bianco M; Carbonaro M; Carpentieri A; Illiano A; Pucci P; Bartolucci S; van der Oost J; Fiorentino G mBio; 2021 Dec; 12(6):e0281321. PubMed ID: 34872358 [TBL] [Abstract][Full Text] [Related]
23. Loosely-packed dynamical structures with partially-melted surface being the key for thermophilic argonaute proteins achieving high DNA-cleavage activity. Zheng L; Lu H; Zan B; Li S; Liu H; Liu Z; Huang J; Liu Y; Jiang F; Liu Q; Feng Y; Hong L Nucleic Acids Res; 2022 Jul; 50(13):7529-7544. PubMed ID: 35766425 [TBL] [Abstract][Full Text] [Related]
25. A long look at short prokaryotic Argonautes. Koopal B; Mutte SK; Swarts DC Trends Cell Biol; 2023 Jul; 33(7):605-618. PubMed ID: 36428175 [TBL] [Abstract][Full Text] [Related]
26. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes. Zhu L; Jiang H; Sheong FK; Cui X; Wang Y; Gao X; Huang X Prog Biophys Mol Biol; 2017 Sep; 128():39-46. PubMed ID: 27697475 [TBL] [Abstract][Full Text] [Related]
27. Unexpected binding behaviors of bacterial Argonautes in human cells cast doubts on their use as targetable gene regulators. O'Geen H; Ren C; Coggins NB; Bates SL; Segal DJ PLoS One; 2018; 13(3):e0193818. PubMed ID: 29584750 [TBL] [Abstract][Full Text] [Related]
28. DNA-guided DNA interference by a prokaryotic Argonaute. Swarts DC; Jore MM; Westra ER; Zhu Y; Janssen JH; Snijders AP; Wang Y; Patel DJ; Berenguer J; Brouns SJJ; van der Oost J Nature; 2014 Mar; 507(7491):258-261. PubMed ID: 24531762 [TBL] [Abstract][Full Text] [Related]
29. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus. Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650 [TBL] [Abstract][Full Text] [Related]
30. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Sheng G; Zhao H; Wang J; Rao Y; Tian W; Swarts DC; van der Oost J; Patel DJ; Wang Y Proc Natl Acad Sci U S A; 2014 Jan; 111(2):652-7. PubMed ID: 24374628 [TBL] [Abstract][Full Text] [Related]
31. Selective amplification of RNA utilizing the nucleotide analog dITP and Thermus thermophilus DNA polymerase. Auer T; Sninsky JJ; Gelfand DH; Myers TW Nucleic Acids Res; 1996 Dec; 24(24):5021-5. PubMed ID: 9016675 [TBL] [Abstract][Full Text] [Related]
32. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Kersting S; Rausch V; Bier FF; von Nickisch-Rosenegk M Malar J; 2014 Mar; 13():99. PubMed ID: 24629133 [TBL] [Abstract][Full Text] [Related]
33. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Makarova KS; Wolf YI; van der Oost J; Koonin EV Biol Direct; 2009 Aug; 4():29. PubMed ID: 19706170 [TBL] [Abstract][Full Text] [Related]
34. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. Liu TY; Iavarone AT; Doudna JA PLoS One; 2017; 12(1):e0170552. PubMed ID: 28114398 [TBL] [Abstract][Full Text] [Related]
35. Sensitive and specific detection of miRNA using an isothermal exponential amplification method using fluorescence-labeled LNA/DNA chimera primers. Huang JF; Zhao N; Xu HQ; Xia H; Wei K; Fu WL; Huang Q Anal Bioanal Chem; 2016 Oct; 408(26):7437-46. PubMed ID: 27485624 [TBL] [Abstract][Full Text] [Related]
36. Sensitive naked-eye detection of telomerase activity based on exponential amplification reaction and lateral flow assay. Cheng XR; Wang F; Liu CY; Li J; Shan C; Wang K; Wang Y; Li PF; Li XM Anal Bioanal Chem; 2022 Aug; 414(20):6139-6147. PubMed ID: 35715586 [TBL] [Abstract][Full Text] [Related]
37. Genetic and structural analysis of base substitutions in the central pseudoknot of Thermus thermophilus 16S ribosomal RNA. Gregory ST; Dahlberg AE RNA; 2009 Feb; 15(2):215-23. PubMed ID: 19144908 [TBL] [Abstract][Full Text] [Related]
38. Profiling Hunt EA; Tamanaha E; Bonanno K; Cantor EJ; Tanner NA Front Mol Biosci; 2021; 8():670940. PubMed ID: 33996915 [TBL] [Abstract][Full Text] [Related]
39. Two symmetric arginine residues play distinct roles in Lei J; Sheng G; Cheung PP; Wang S; Li Y; Gao X; Zhang Y; Wang Y; Huang X Proc Natl Acad Sci U S A; 2019 Jan; 116(3):845-853. PubMed ID: 30591565 [TBL] [Abstract][Full Text] [Related]
40. Development of a new gene expression vector for Thermus thermophilus using a silica-inducible promoter. Fujino Y; Goda S; Suematsu Y; Doi K Microb Cell Fact; 2020 Jun; 19(1):126. PubMed ID: 32513169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]