These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37195358)
1. Modeling crop yield using NDVI-derived VGM metrics across different climatic regions in the USA. Shammi SA; Meng Q Int J Biometeorol; 2023 Jun; 67(6):1051-1062. PubMed ID: 37195358 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Ji Z; Pan Y; Zhu X; Wang J; Li Q Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671356 [TBL] [Abstract][Full Text] [Related]
3. Multi-Year Mapping of Major Crop Yields in an Irrigation District from High Spatial and Temporal Resolution Vegetation Index. Yu B; Shang S Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404139 [TBL] [Abstract][Full Text] [Related]
4. Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression. Salinero-Delgado M; Estévez J; Pipia L; Belda S; Berger K; Gómez VP; Verrelst J Remote Sens (Basel); 2021 Dec; 14(1):146. PubMed ID: 36081813 [TBL] [Abstract][Full Text] [Related]
5. Analyzing vegetation health dynamics across seasons and regions through NDVI and climatic variables. Mehmood K; Anees SA; Muhammad S; Hussain K; Shahzad F; Liu Q; Ansari MJ; Alharbi SA; Khan WR Sci Rep; 2024 May; 14(1):11775. PubMed ID: 38783048 [TBL] [Abstract][Full Text] [Related]
6. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000). Prasad VK; Anuradha E; Badarinath KV Int J Biometeorol; 2005 Sep; 50(1):6-16. PubMed ID: 15902506 [TBL] [Abstract][Full Text] [Related]
7. Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Qader SH; Utazi CE; Priyatikanto R; Najmaddin P; Hama-Ali EO; Khwarahm NR; Tatem AJ; Dash J Sci Total Environ; 2023 Apr; 869():161716. PubMed ID: 36690106 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada. Jiang R; Xie J; He H; Kuo CC; Zhu J; Yang M Int J Biometeorol; 2016 Sep; 60(9):1389-403. PubMed ID: 26768143 [TBL] [Abstract][Full Text] [Related]
9. In-season weather data provide reliable yield estimates of maize and soybean in the US central Corn Belt. Joshi VR; Kazula MJ; Coulter JA; Naeve SL; Garcia Y Garcia A Int J Biometeorol; 2021 Apr; 65(4):489-502. PubMed ID: 33222025 [TBL] [Abstract][Full Text] [Related]
10. Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China. Li Z; Ding L; Xu D Sci Total Environ; 2022 Apr; 815():152880. PubMed ID: 34998760 [TBL] [Abstract][Full Text] [Related]
11. Machine learning models for predicting vegetation conditions in Mahanadi River basin. Raj DK; Gopikrishnan T Environ Monit Assess; 2023 Nov; 195(12):1401. PubMed ID: 37917222 [TBL] [Abstract][Full Text] [Related]
12. Spatiotemporal differences in climate change impacts on vegetation cover in China from 1982 to 2015. Jin K; Wang F; Zong Q; Qin P; Liu C; Wang S Environ Sci Pollut Res Int; 2022 Feb; 29(7):10263-10276. PubMed ID: 34519006 [TBL] [Abstract][Full Text] [Related]
13. Impacts of climate change and crop management practices on soybean phenology changes in China. He L; Jin N; Yu Q Sci Total Environ; 2020 Mar; 707():135638. PubMed ID: 31780168 [TBL] [Abstract][Full Text] [Related]
14. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq. Qader SH; Dash J; Atkinson PM Sci Total Environ; 2018 Feb; 613-614():250-262. PubMed ID: 28915461 [TBL] [Abstract][Full Text] [Related]
15. Projecting crop yield in northern high latitude area. Matsumura K Recent Pat Food Nutr Agric; 2014; 6(2):127-42. PubMed ID: 25733071 [TBL] [Abstract][Full Text] [Related]
16. Improving in-season wheat yield prediction using remote sensing and additional agronomic traits as predictors. Gracia-Romero A; Rufo R; Gómez-Candón D; Soriano JM; Bellvert J; Yannam VRR; Gulino D; Lopes MS Front Plant Sci; 2023; 14():1063983. PubMed ID: 37077632 [TBL] [Abstract][Full Text] [Related]
17. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change]. Wang XY; Yang XG; Sun S; Xie WJ Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence framework for modeling and predicting crop yield to enhance food security in Saudi Arabia. Al-Adhaileh MH; Aldhyani THH PeerJ Comput Sci; 2022; 8():e1104. PubMed ID: 36262130 [TBL] [Abstract][Full Text] [Related]
20. [Variation characteristics of NDVI and its response to climatic change in the growing season of Changbai Mountain Nature Reserve during 2001 and 2018]. Zhang Y; Yuan FH; Wang AZ; Guan DX; Dai GH; Wu JB Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1213-1222. PubMed ID: 32530196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]