These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37195391)

  • 21. The design and inhibitory profile of new benzimidazole derivatives against triosephosphate isomerase from Trypanosoma cruzi: a problem of residue motility.
    Romo-Mancillas A; Téllez-Valencia A; Yépez-Mulia L; Hernández-Luis F; Hernández-Campos A; Castillo R
    J Mol Graph Model; 2011 Sep; 30():90-9. PubMed ID: 21798779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.
    Romero AH; López SE
    J Mol Graph Model; 2017 Sep; 76():313-329. PubMed ID: 28763686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of potential trypanothione reductase inhibitors among commercially available β-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking.
    Rodríguez-Becerra J; Cáceres-Jensen L; Hernández-Ramos J; Barrientos L
    Mol Divers; 2017 Aug; 21(3):697-711. PubMed ID: 28656524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Immunoreactivity and immunogenicity analysis of the recombinant cathepsin L-like protease of Fasciola hepatica in SD rats].
    Ran XH; Wen XB; Wang CR; Li XJ; Wei XM
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2014 Aug; 32(4):289-92. PubMed ID: 25518593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies.
    Iribarne F; Paulino M; Aguilera S; Tapia O
    J Mol Graph Model; 2009 Nov; 28(4):371-81. PubMed ID: 19801198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches.
    Hernández Alvarez L; Naranjo Feliciano D; Hernández González JE; Soares RO; Barreto Gomes DE; Pascutti PG
    PLoS Negl Trop Dis; 2015 May; 9(5):e0003759. PubMed ID: 25978322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thio- and selenosemicarbazones as antiprotozoal agents against
    Ibáñez-Escribano A; Fonseca-Berzal C; Martínez-Montiel M; Álvarez-Márquez M; Gómez-Núñez M; Lacueva-Arnedo M; Espinosa-Buitrago T; Martín-Pérez T; Escario JA; Merino-Montiel P; Montiel-Smith S; Gómez-Barrio A; López Ó; Fernández-Bolaños JG
    J Enzyme Inhib Med Chem; 2022 Dec; 37(1):781-791. PubMed ID: 35193444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New chemotypes as Trypanosoma cruzi triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition.
    Alvarez G; Martínez J; Aguirre-López B; Cabrera N; Pérez-Díaz L; de Gómez-Puyou MT; Gómez-Puyou A; Pérez-Montfort R; Garat B; Merlino A; González M; Cerecetto H
    J Enzyme Inhib Med Chem; 2014 Apr; 29(2):198-204. PubMed ID: 23406473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase.
    Arias DG; Herrera FE; Garay AS; Rodrigues D; Forastieri PS; Luna LE; Bürgi MD; Prieto C; Iglesias AA; Cravero RM; Guerrero SA
    Eur J Med Chem; 2017 Jan; 125():1088-1097. PubMed ID: 27810595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico identification of inhibitors of ribose 5-phosphate isomerase from Trypanosoma cruzi using ligand and structure based approaches.
    de V C Sinatti V; R Baptista LP; Alves-Ferreira M; Dardenne L; Hermínio Martins da Silva J; Guimarães AC
    J Mol Graph Model; 2017 Oct; 77():168-180. PubMed ID: 28865321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro screening of american plant extracts on Trypanosoma cruzi and trichomonas vaginalis.
    Muelas-Serrano S; Nogal JJ; Martínez-Díaz RA; Escario JA; Martínez-Fernández AR; Gómez-Barrio A
    J Ethnopharmacol; 2000 Jul; 71(1-2):101-7. PubMed ID: 10904152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 2- and 3-substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity.
    Salmon-Chemin L; Buisine E; Yardley V; Kohler S; Debreu MA; Landry V; Sergheraert C; Croft SL; Krauth-Siegel RL; Davioud-Charvet E
    J Med Chem; 2001 Feb; 44(4):548-65. PubMed ID: 11170645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antiprotozoal investigation of 20 plant metabolites on Trypanosoma cruzi and Leishmania amazonensis amastigotes. Atalantoflavone alters the mitochondrial membrane potential.
    Lemos da Silva LA; Höehr de Moraes M; Scotti MT; Scotti L; de Jesus Souza R; Nantchouang Ouete JL; Biavatti MW; Steindel M; Sandjo LP
    Parasitology; 2019 Jun; 146(7):849-856. PubMed ID: 30755289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.
    Miranda-Ozuna JF; Hernández-García MS; Brieba LG; Benítez-Cardoza CG; Ortega-López J; González-Robles A; Arroyo R
    Infect Immun; 2016 Oct; 84(10):2878-94. PubMed ID: 27481251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of peptide inhibitors complexed with Trypanosoma cruzi trypanothione reductase.
    Silva Da Rocha Pita S; Batista PR; Albuquerque MG; Pascutti PG
    Chem Biol Drug Des; 2012 Oct; 80(4):561-71. PubMed ID: 22702225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning, expression, purification and characterization of triosephosphate isomerase from Trypanosoma cruzi.
    Ostoa-Saloma P; Garza-Ramos G; Ramírez J; Becker I; Berzunza M; Landa A; Gómez-Puyou A; Tuena de Gómez-Puyou M; Pérez-Montfort R
    Eur J Biochem; 1997 Mar; 244(3):700-5. PubMed ID: 9108237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and biological evaluation in vitro and in silico of N-propionyl-N'-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi.
    Delgado-Maldonado T; Nogueda-Torres B; Espinoza-Hicks JC; Vázquez-Jiménez LK; Paz-González AD; Juárez-Saldívar A; Rivera G
    Mol Divers; 2022 Feb; 26(1):39-50. PubMed ID: 33216257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potent and Selective Inhibitors of Trypanosoma cruzi Triosephosphate Isomerase with Concomitant Inhibition of Cruzipain: Inhibition of Parasite Growth through Multitarget Activity.
    Aguilera E; Varela J; Birriel E; Serna E; Torres S; Yaluff G; de Bilbao NV; Aguirre-López B; Cabrera N; Díaz Mazariegos S; de Gómez-Puyou MT; Gómez-Puyou A; Pérez-Montfort R; Minini L; Merlino A; Cerecetto H; González M; Alvarez G
    ChemMedChem; 2016 Jun; 11(12):1328-38. PubMed ID: 26492824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfhydryl reagent susceptibility in proteins with high sequence similarity--triosephosphate isomerase from Trypanosoma brucei, Trypanosoma cruzi and Leishmania mexicana.
    Garza-Ramos G; Cabrera N; Saavedra-Lira E; Tuena de Gómez-Puyou M; Ostoa-Saloma P; Pérez-Montfort R; Gómez-Puyou A
    Eur J Biochem; 1998 May; 253(3):684-91. PubMed ID: 9654066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Amino Naphthoquinone Derivatives as Anti-
    Espinosa-Bustos C; Ortiz Pérez M; Gonzalez-Gonzalez A; Zarate AM; Rivera G; Belmont-Díaz JA; Saavedra E; Cuellar MA; Vázquez K; Salas CO
    Pharmaceutics; 2022 May; 14(6):. PubMed ID: 35745694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.