These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37195391)

  • 41. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents.
    Torres E; Moreno-Viguri E; Galiano S; Devarapally G; Crawford PW; Azqueta A; Arbillaga L; Varela J; Birriel E; Di Maio R; Cerecetto H; González M; Aldana I; Monge A; Pérez-Silanes S
    Eur J Med Chem; 2013 Aug; 66():324-34. PubMed ID: 23811257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines.
    Khan MO; Austin SE; Chan C; Yin H; Marks D; Vaghjiani SN; Kendrick H; Yardley V; Croft SL; Douglas KT
    J Med Chem; 2000 Aug; 43(16):3148-56. PubMed ID: 10956223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and evaluation of 9,9-dimethylxanthene tricyclics against trypanothione reductase, Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani.
    Chibale K; Visser M; Yardley V; Croft SL; Fairlamb AH
    Bioorg Med Chem Lett; 2000 Jun; 10(11):1147-50. PubMed ID: 10866368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activity assays of thiadiazine derivatives on Trichomonas vaginalis and amastigote forms of Trypanosoma cruzi.
    Atienza J; Martínez Díaz RA; Gómez Barrio A; Escario JA; Herrero A; Ochoa C; Rodríguez J
    Chemotherapy; 1992; 38(6):441-6. PubMed ID: 1288970
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective inactivation of triosephosphate isomerase from Trypanosoma cruzi by brevifolin carboxylate derivatives isolated from Geranium bellum Rose.
    Gayosso-De-Lucio J; Torres-Valencia M; Rojo-Domínguez A; Nájera-Peña H; Aguirre-López B; Salas-Pacheco J; Avitia-Domínguez C; Téllez-Valencia A
    Bioorg Med Chem Lett; 2009 Oct; 19(20):5936-9. PubMed ID: 19733070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA; López AG; Pérez Y; Cos P; Froeyen M
    Parasitol Res; 2019 May; 118(5):1533-1548. PubMed ID: 30903349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis, in-vitro antiprotozoal activity and molecular docking study of isothiocyanate derivatives.
    Babanezhad Harikandei K; Salehi P; Ebrahimi SN; Bararjanian M; Kaiser M; Al-Harrasi A
    Bioorg Med Chem; 2020 Jan; 28(1):115185. PubMed ID: 31784198
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homology modeling of T. cruzi and L. major NADH-dependent fumarate reductases: ligand docking, molecular dynamics validation, and insights on their binding modes.
    Merlino A; Vieites M; Gambino D; Coitiño EL
    J Mol Graph Model; 2014 Mar; 48():47-59. PubMed ID: 24370672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico identification and evaluation of new Trypanosoma cruzi trypanothione reductase (TcTR) inhibitors obtained from natural products database of the Bahia semi-arid region (NatProDB).
    da Paixão VG; Pita SSDR
    Comput Biol Chem; 2019 Apr; 79():36-47. PubMed ID: 30710804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities.
    O'Sullivan MC; Durham TB; Valdes HE; Dauer KL; Karney NJ; Forrestel AC; Bacchi CJ; Baker JF
    Bioorg Med Chem; 2015 Mar; 23(5):996-1010. PubMed ID: 25661449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi.
    Lavaggi ML; Aguirre G; Boiani L; Orelli L; García B; Cerecetto H; González M
    Eur J Med Chem; 2008 Aug; 43(8):1737-41. PubMed ID: 18068272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synergistic effect of compounds directed to triosephosphate isomerase, a combination to develop drug against trichomoniasis.
    Benítez-Cardoza CG; Brieba LG; Arroyo R; Rojo-Domínguez A; Vique-Sánchez JL
    Arch Pharm (Weinheim); 2022 Jun; 355(6):e2200046. PubMed ID: 35332589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, synthesis, molecular modelling, and in vitro evaluation of tricyclic coumarins against Trypanosoma cruzi.
    Coelho GS; Andrade JS; Xavier VF; Sales Junior PA; Rodrigues de Araujo BC; Fonseca KDS; Caetano MS; Murta SMF; Vieira PM; Carneiro CM; Taylor JG
    Chem Biol Drug Des; 2019 Mar; 93(3):337-350. PubMed ID: 30362274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductase.
    Cavalli A; Lizzi F; Bongarzone S; Brun R; Luise Krauth-Siegel R; Bolognesi ML
    Bioorg Med Chem Lett; 2009 Jun; 19(11):3031-5. PubMed ID: 19414258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design, synthesis and biological evaluation of new potent 5-nitrofuryl derivatives as anti-Trypanosoma cruzi agents. Studies of trypanothione binding site of trypanothione reductase as target for rational design.
    Aguirre G; Cabrera E; Cerecetto H; Di Maio R; González M; Seoane G; Duffaut A; Denicola A; Gil MJ; Martínez-Merino V
    Eur J Med Chem; 2004 May; 39(5):421-31. PubMed ID: 15110968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel aryl β-aminocarbonyl derivatives as inhibitors of Trypanosoma cruzi trypanothione reductase: binding mode revised by docking and GRIND2-based 3D-QSAR procedures.
    de Paula da Silva CH; Bernardes LS; da Silva VB; Zani CL; Carvalho I
    J Biomol Struct Dyn; 2012; 29(6):702-16. PubMed ID: 22546000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents.
    Elizondo-Jimenez S; Moreno-Herrera A; Reyes-Olivares R; Dorantes-Gonzalez E; Nogueda-Torres B; Oliveira EAG; Romeiro NC; Lima LM; Palos I; Rivera G
    Med Chem; 2017; 13(2):149-158. PubMed ID: 27396731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of the Fasciola hepatica newly excysted juvenile cathepsin L3 (FhCL3) by its propeptide: a proposed 'clamp-like' mechanism of binding and inhibition.
    Pritsch IC; Tikhonova IG; Jewhurst HL; Drysdale O; Cwiklinski K; Molento MB; Dalton JP; Verissimo CM
    BMC Mol Cell Biol; 2020 Dec; 21(1):90. PubMed ID: 33287692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity.
    de Molfetta FA; de Freitas RF; da Silva AB; Montanari CA
    J Mol Model; 2009 Oct; 15(10):1175-84. PubMed ID: 19263098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1,2,4-thiadiazol-5(4H)-ones: a new class of selective inhibitors of Trypanosoma cruzi triosephosphate isomerase. Study of the mechanism of inhibition.
    Alvarez G; Aguirre-López B; Cabrera N; Marins EB; Tinoco L; Batthyány CI; de Gómez-Puyou MT; Puyou AG; Pérez-Montfort R; Cerecetto H; González M
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):981-9. PubMed ID: 22803666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.