BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37195837)

  • 1. Individualized Models for Glucose Prediction in Type 1 Diabetes: Comparing Black-Box Approaches to a Physiological White-Box One.
    Cappon G; Prendin F; Facchinetti A; Sparacino G; Favero SD
    IEEE Trans Biomed Eng; 2023 Nov; 70(11):3105-3115. PubMed ID: 37195837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions.
    Prendin F; Díez JL; Del Favero S; Sparacino G; Facchinetti A; Bondia J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example.
    Mosquera-Lopez C; Jacobs PG
    J Diabetes Sci Technol; 2022 Jan; 16(1):7-18. PubMed ID: 34490793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal.
    Liu C; Vehí J; Avari P; Reddy M; Oliver N; Georgiou P; Herrero P
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking Machine Learning Algorithms on Blood Glucose Prediction for Type I Diabetes in Comparison With Classical Time-Series Models.
    Xie J; Wang Q
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3101-3124. PubMed ID: 32091990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Use of Glucose-Specific Model Identification and Alarm Strategy Based on Prediction-Funnel to Improve Online Forecasting of Hypoglycemic Events.
    Faccioli S; Prendin F; Facchinetti A; Sparacino G; Del Favero S
    J Diabetes Sci Technol; 2023 Sep; 17(5):1295-1303. PubMed ID: 35611461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear Model Identification for Personalized Prediction and Control in Diabetes.
    Faccioli S; Facchinetti A; Sparacino G; Pillonetto G; Del Favero S
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):558-568. PubMed ID: 34347589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only.
    Prendin F; Del Favero S; Vettoretti M; Sparacino G; Facchinetti A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting.
    Li K; Liu C; Zhu T; Herrero P; Georgiou P
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):414-423. PubMed ID: 31369390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluation of a recursive model identification technique for type 1 diabetes.
    Finan DA; Doyle FJ; Palerm CC; Bevier WC; Zisser HC; Jovanovic L; Seborg DE
    J Diabetes Sci Technol; 2009 Sep; 3(5):1192-202. PubMed ID: 20144436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and Evaluation of an Intelligent Short-Term Blood Glucose Prediction Model Based on Noninvasive Monitoring and Deep Learning Techniques.
    Zhang Y; Gao G
    J Healthc Eng; 2022; 2022():8956850. PubMed ID: 35449869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction.
    Rabby MF; Tu Y; Hossen MI; Lee I; Maida AS; Hei X
    BMC Med Inform Decis Mak; 2021 Mar; 21(1):101. PubMed ID: 33726723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Prediction of Blood Glucose Levels in Type 1 Diabetes Using a CNN-LSTM-Based Deep Neural Network.
    Jaloli M; Cescon M
    J Diabetes Sci Technol; 2023 Nov; 17(6):1590-1601. PubMed ID: 35466701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Blood Risk Score in Diabetes Using Deep Neural Networks.
    Toledo-Marín JQ; Ali T; van Rooij T; Görges M; Wasserman WW
    J Clin Med; 2023 Feb; 12(4):. PubMed ID: 36836230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Stacked Long Short-Term Memory Approach for Predictive Blood Glucose Monitoring in Women with Gestational Diabetes Mellitus.
    Lu HY; Lu P; Hirst JE; Mackillop L; Clifton DA
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A personalized multitasking framework for real-time prediction of blood glucose levels in type 1 diabetes patients.
    Yang H; Li W; Tian M; Ren Y
    Math Biosci Eng; 2024 Jan; 21(2):2515-2541. PubMed ID: 38454694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A personalized blood glucose level prediction model with a fine-tuning strategy: A proof-of-concept study.
    Seo W; Park SW; Kim N; Jin SM; Park SM
    Comput Methods Programs Biomed; 2021 Nov; 211():106424. PubMed ID: 34598081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an interpretable deep learning model for the prediction of riverine suspended sediment load.
    Mohammadi-Raigani Z; Gholami H; Mohamadifar A; Samani AN; Pradhan B
    Environ Sci Pollut Res Int; 2024 May; 31(22):32480-32493. PubMed ID: 38656723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using nonlinear auto-regressive with exogenous input neural network (NNARX) in blood glucose prediction.
    Allam F
    Bioelectron Med; 2024 Apr; 10(1):11. PubMed ID: 38627825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.