BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37195839)

  • 21. Ranking cancer drivers via betweenness-based outlier detection and random walks.
    Erten C; Houdjedj A; Kazan H
    BMC Bioinformatics; 2021 Feb; 22(1):62. PubMed ID: 33568049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive evaluation of computational methods for predicting cancer driver genes.
    Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Personalized Driver Gene Prediction Using Graph Convolutional Networks with Conditional Random Fields.
    Wei PJ; Zhu AD; Cao R; Zheng C
    Biology (Basel); 2024 Mar; 13(3):. PubMed ID: 38534453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A random walk-based method to identify driver genes by integrating the subcellular localization and variation frequency into bipartite graph.
    Song J; Peng W; Wang F
    BMC Bioinformatics; 2019 May; 20(1):238. PubMed ID: 31088372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach.
    Rahimi M; Teimourpour B; Marashi SA
    Comput Biol Med; 2019 Nov; 114():103362. PubMed ID: 31561101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DriverMP enables improved identification of cancer driver genes.
    Liu Y; Han J; Kong T; Xiao N; Mei Q; Liu J
    Gigascience; 2022 Dec; 12():. PubMed ID: 38091511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network-Based Coverage of Mutational Profiles Reveals Cancer Genes.
    Hristov BH; Singh M
    Cell Syst; 2017 Sep; 5(3):221-229.e4. PubMed ID: 28957656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network.
    Dai W; Yue W; Peng W; Fu X; Liu L; Liu L
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PersonaDrive: a method for the identification and prioritization of personalized cancer drivers.
    Erten C; Houdjedj A; Kazan H; Taleb Bahmed AA
    Bioinformatics; 2022 Jun; 38(13):3407-3414. PubMed ID: 35579340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Network-based prediction approach for cancer-specific driver missense mutations using a graph neural network.
    Hatano N; Kamada M; Kojima R; Okuno Y
    BMC Bioinformatics; 2023 Oct; 24(1):383. PubMed ID: 37817080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction-Based Feature Selection for Uncovering Cancer Driver Genes Through Copy Number-Driven Expression Level.
    Park H; Niida A; Imoto S; Miyano S
    J Comput Biol; 2017 Feb; 24(2):138-152. PubMed ID: 27759426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Network control principles for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Akutsu T; Chen L
    Brief Bioinform; 2020 Sep; 21(5):1641-1662. PubMed ID: 31711128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data.
    Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M
    Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data.
    Jia P; Zhao Z
    PLoS Comput Biol; 2014 Feb; 10(2):e1003460. PubMed ID: 24516372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.