These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37196139)

  • 1. Overview of Chemical Methods to Probe RNA Structure with Radionucleotides.
    Gupta M; Garfio CM; Spitale RC
    Curr Protoc; 2023 May; 3(5):e781. PubMed ID: 37196139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using 5'
    Garfio CM; Gupta M; Spitale RC
    Curr Protoc; 2023 Jul; 3(7):e830. PubMed ID: 37471570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.
    Murgha Y; Beliveau B; Semrau K; Schwartz D; Wu CT; Gulari E; Rouillard JM
    Biotechniques; 2015 Jun; 58(6):301-7. PubMed ID: 26054766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA sequencing by primer extension.
    Nilsen TW
    Cold Spring Harb Protoc; 2013 Dec; 2013(12):1182-5. PubMed ID: 24298029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LNA-modified primers drastically improve hybridization to target RNA and reverse transcription.
    Fratczak A; Kierzek R; Kierzek E
    Biochemistry; 2009 Jan; 48(3):514-6. PubMed ID: 19119855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primer Extension, Capture, and On-Bead cDNA Ligation: An Efficient RNAseq Library Prep Method for Determining Reverse Transcription Termination Sites.
    Ordoukhanian P; Nichols J; Head SR
    Methods Mol Biol; 2018; 1712():253-261. PubMed ID: 29224079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase.
    Allawi HT; Dong F; Ip HS; Neri BP; Lyamichev VI
    RNA; 2001 Feb; 7(2):314-27. PubMed ID: 11233988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex formation between a putative 66-residue thumb domain of bacterial reverse transcriptase RT-Ec86 and the primer recognition RNA.
    Inouye M; Ke H; Yashio A; Yamanaka K; Nariya H; Shimamoto T; Inouye S
    J Biol Chem; 2004 Dec; 279(49):50735-42. PubMed ID: 15371452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of plus-strand primer selection, removal, and reutilization by retroviral reverse transcriptases.
    Schultz SJ; Zhang M; Kelleher CD; Champoux JJ
    J Biol Chem; 2000 Oct; 275(41):32299-309. PubMed ID: 10913435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxed primer specificity associated with reverse transcriptases encoded by the pFOXC retroplasmids of Fusarium oxysporum.
    Simpson EB; Ross SL; Marchetti SE; Kennell JC
    Eukaryot Cell; 2004 Dec; 3(6):1589-600. PubMed ID: 15590832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo.
    Fechter P; Parmentier D; Wu Z; Fuchsbauer O; Romby P; Marzi S
    Methods Mol Biol; 2016; 1490():83-103. PubMed ID: 27665595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the structure of RNAs in solution.
    Ehresmann C; Baudin F; Mougel M; Romby P; Ebel JP; Ehresmann B
    Nucleic Acids Res; 1987 Nov; 15(22):9109-28. PubMed ID: 2446263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single unpaired nucleotides facilitate HIV-1 reverse transcriptase displacement synthesis through duplex RNA.
    Lanciault C; Champoux JJ
    J Biol Chem; 2004 Jul; 279(31):32252-61. PubMed ID: 15169769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of RNA Structure with In Vitro SHAPE Experiments.
    Baes R; Charlier D; Peeters E
    Methods Mol Biol; 2022; 2516():259-290. PubMed ID: 35922631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence based primer extension technique to determine transcriptional starting points and cleavage sites of RNases in vivo.
    Schuster CF; Bertram R
    J Vis Exp; 2014 Oct; (92):e52134. PubMed ID: 25406941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput mapping of RNA solvent accessibility at the single-nucleotide resolution by RtcB ligation between a fixed 5'-OH-end linker and unique 3'-P-end fragments from hydroxyl radical cleavage.
    Solayman M; Litfin T; Zhou Y; Zhan J
    RNA Biol; 2022 Jan; 19(1):1179-1189. PubMed ID: 36369947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase, single nucleotide primer extension of DNA/RNA hybrids by reverse transcriptases.
    Pirrung MC; Worden JD; Labriola JP; Montague-Smith MP; Weislo LJ
    Bioorg Med Chem Lett; 2001 Sep; 11(18):2437-40. PubMed ID: 11549441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA Secondary Structure Study by Chemical Probing Methods Using DMS and CMCT.
    Alghoul F; Eriani G; Martin F
    Methods Mol Biol; 2021; 2300():241-250. PubMed ID: 33792883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of an oligoribonucleotide containing the polypurine tract sequence as a primer by HIV reverse transcriptase.
    Fuentes GM; Rodríguez-Rodríguez L; Fay PJ; Bambara RA
    J Biol Chem; 1995 Nov; 270(47):28169-76. PubMed ID: 7499308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RT-qPCR with chimeric dU stem-loop primer is efficient for the detection of bacterial small RNAs.
    Wu Y; Xing X; You T; Liang R; Liu J
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4561-4568. PubMed ID: 28314872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.