These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37196167)

  • 1. Comparison of On-the-Fly Probability Enhanced Sampling and Parallel Tempering Combined with Metadynamics for Atomistic Simulations of RNA Tetraloop Folding.
    Rahimi K; Piaggi PM; Zerze GH
    J Phys Chem B; 2023 Jun; 127(21):4722-4732. PubMed ID: 37196167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics.
    Kapakayala AB; Nair NN
    J Comput Chem; 2021 Dec; 42(31):2233-2240. PubMed ID: 34585768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing.
    Gupta A; Verma S; Javed R; Sudhakar S; Srivastava S; Nair NN
    J Comput Chem; 2022 Jun; 43(17):1186-1200. PubMed ID: 35510789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics.
    Bussi G; Gervasio FL; Laio A; Parrinello M
    J Am Chem Soc; 2006 Oct; 128(41):13435-41. PubMed ID: 17031956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.
    Marsili S; Signorini GF; Chelli R; Marchi M; Procacci P
    J Comput Chem; 2010 Apr; 31(5):1106-16. PubMed ID: 19824035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining Protein Folding Pathway and Associated Energetics through Partitioned Integrated-Tempering-Sampling Simulation.
    Shao Q; Shi J; Zhu W
    J Chem Theory Comput; 2017 Mar; 13(3):1229-1243. PubMed ID: 28121433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Study of RNA Tetraloop Thermodynamics, Including Misfolded States.
    Zerze GH; Piaggi PM; Debenedetti PG
    J Phys Chem B; 2021 Dec; 125(50):13685-13695. PubMed ID: 34890201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Metadynamics and Integrated Tempering Sampling.
    Yang YI; Niu H; Parrinello M
    J Phys Chem Lett; 2018 Nov; 9(22):6426-6430. PubMed ID: 30354148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential slow degrees of freedom in protein-surface simulations: A metadynamics investigation.
    Prakash A; Sprenger KG; Pfaendtner J
    Biochem Biophys Res Commun; 2018 Mar; 498(2):274-281. PubMed ID: 28720500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking well-tempered metadynamics simulations with experiments.
    Barducci A; Bonomi M; Parrinello M
    Biophys J; 2010 May; 98(9):L44-6. PubMed ID: 20441734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced sampling techniques in biomolecular simulations.
    Spiwok V; Sucur Z; Hosek P
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1130-40. PubMed ID: 25482668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
    Kührová P; Best RB; Bottaro S; Bussi G; Šponer J; Otyepka M; Banáš P
    J Chem Theory Comput; 2016 Sep; 12(9):4534-48. PubMed ID: 27438572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Insights into the Stability and Folding Pathways of Human Telomeric DNA G-Quadruplexes.
    Luo D; Mu Y
    J Phys Chem B; 2016 Jun; 120(22):4912-26. PubMed ID: 27214027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Molecular Dynamics Simulations of Intrinsically Disordered Proteins.
    Masetti M; Bernetti M; Cavalli A
    Methods Mol Biol; 2020; 2141():391-411. PubMed ID: 32696368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling.
    Yang YI; Zhang J; Che X; Yang L; Gao YQ
    J Chem Phys; 2016 Mar; 144(9):094105. PubMed ID: 26957155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications.
    Mlýnský V; Janeček M; Kührová P; Fröhlking T; Otyepka M; Bussi G; Banáš P; Šponer J
    J Chem Theory Comput; 2022 Apr; 18(4):2642-2656. PubMed ID: 35363478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the protein G helix free-energy surface by solute tempering metadynamics.
    Camilloni C; Provasi D; Tiana G; Broglia RA
    Proteins; 2008 Jun; 71(4):1647-54. PubMed ID: 18076039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-energy landscape of a hyperstable RNA tetraloop.
    Miner JC; Chen AA; García AE
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6665-70. PubMed ID: 27233937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
    Chakraborty D; Collepardo-Guevara R; Wales DJ
    J Am Chem Soc; 2014 Dec; 136(52):18052-61. PubMed ID: 25453221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.