BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3719619)

  • 1. Ultrastructure of the squid axon membrane as revealed by freeze-fracture electron microscopy.
    Chang DC; Tasaki I
    Cell Mol Neurobiol; 1986 Mar; 6(1):43-53. PubMed ID: 3719619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-fracture studies on the giant axon and ensheathing Schwann cells of the squid.
    Villegas GM; Lane NJ; Villegas J
    J Neurocytol; 1987 Feb; 16(1):11-21. PubMed ID: 3585414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular structure of axon membrane and action potential conduction in myelin deficient and myelin deficient heterozygote rat optic nerves.
    Waxman SG; Black JA; Duncan ID; Ransom BR
    J Neurocytol; 1990 Feb; 19(1):11-28. PubMed ID: 2351992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure.
    Black JA; Waxman SG; Hildebrand C
    J Neurocytol; 1985 Dec; 14(6):887-907. PubMed ID: 3831245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeze-fracture studies on unmyelinated axolemma of rat cervical sympathetic trunk: correlation with saxitoxin binding.
    Black JA; Waxman SG
    Proc R Soc Lond B Biol Sci; 1988 Feb; 233(1270):45-54. PubMed ID: 2451831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transglial pathway of diffusion in the Schwann sheath of the squid giant axon.
    Zwahlen MJ; Sandri C; Greeff NG
    J Neurocytol; 1988 Apr; 17(2):145-59. PubMed ID: 3204409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord.
    Black JA; Waxman SG; Sims TJ; Gilmore SA
    J Neurocytol; 1986 Dec; 15(6):745-61. PubMed ID: 3819778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of the cortical endoplasmic reticulum in the squid giant axon.
    Metuzals J; Chang D; Hammar K; Reese TS
    J Neurocytol; 1997 Aug; 26(8):529-39. PubMed ID: 9350805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat optic nerve: freeze-fracture studies during development of myelinated axons.
    Black JA; Foster RE; Waxman SG
    Brain Res; 1982 Oct; 250(1):1-20. PubMed ID: 7139310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular structure of axonal membrane in the optic nerve of the jimpy mouse.
    Black JA; Fields RD; Waxman SG
    J Neuropathol Exp Neurol; 1988 Nov; 47(6):588-98. PubMed ID: 3171604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-fracture study of the mechanoreceptive digital corpuscles of mice.
    Ide C; Kumagai K; Hayashi S
    J Neurocytol; 1985 Dec; 14(6):1037-52. PubMed ID: 3831243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane specializations of neuritic growth cones in vivo: a quantitative IMP analysis.
    Small RK
    J Neurosci Res; 1985; 13(1-2):39-53. PubMed ID: 3871864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves.
    Tao-Cheng JH; Rosenbluth J
    Brain Res; 1980 Oct; 199(2):249-65. PubMed ID: 6251942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination.
    Ellisman MH
    J Neurocytol; 1979 Dec; 8(6):719-35. PubMed ID: 541690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-fracture study of the zymogen granule membrane of pancreas: two novel types of intramembrane particles.
    Cabana C; Magny P; Nadeau D; Grondin G; Beaudoin A
    Eur J Cell Biol; 1988 Feb; 45(2):246-55. PubMed ID: 3366124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associated particle aggregates in juxtaparanodal axolemma and adaxonal Schwann cell membrane of rat peripheral nerve.
    Stolinski C; Breathnach AS; Martin B; Thomas PK; King RH; Gabriel G
    J Neurocytol; 1981 Aug; 10(4):679-91. PubMed ID: 6975804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of the Schwann sheath from the giant nerve fiber of the squid: an electron-microscopic study of the axolemma and associated axoplasmic structures.
    Metuzals J; Tasaki I; Terakawa S; Clapin DF
    Cell Tissue Res; 1981; 221(1):1-15. PubMed ID: 7032702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructure and permeability of the Schwann cell layer surrounding the giant axon of the squid.
    Brown ER; Abbott NJ
    J Neurocytol; 1993 Apr; 22(4):283-98. PubMed ID: 8478646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular structure of axonal membrane during acute experimental allergic encephalomyelitis in rat and guinea pig spinal cord.
    Black JA; Waxman SG; Smith ME
    J Neuropathol Exp Neurol; 1987 Mar; 46(2):167-84. PubMed ID: 3493331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemma.
    Black JA; Foster RE; Waxman SG
    J Neurocytol; 1981 Dec; 10(6):981-93. PubMed ID: 7310484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.