These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37196383)

  • 1. Enhancement of biohydrogen production in Clostridium acetobutylicum ATCC 824 by overexpression of glyceraldehyde-3-phosphate dehydrogenase gene.
    Kim SH; Hwang JH; Kim HJ; Oh SJ; Kim HJ; Shin N; Kim SH; Park JH; Bhatia SK; Yang YH
    Enzyme Microb Technol; 2023 Aug; 168():110244. PubMed ID: 37196383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.
    Hassan EA; Abd-Alla MH; Bagy MM; Morsy FM
    Anaerobe; 2015 Aug; 34():125-31. PubMed ID: 26014369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability.
    Qi F; Thakker C; Zhu F; Pena M; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):993-1002. PubMed ID: 30141107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes.
    Ventura JR; Hu H; Jahng D
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7505-16. PubMed ID: 23838793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.
    Martínez I; Zhu J; Lin H; Bennett GN; San KY
    Metab Eng; 2008 Nov; 10(6):352-9. PubMed ID: 18852061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive effect of phasin in biohydrogen production of non polyhydroxybutyrate-producing Clostridium acetobutylicum ATCC 824.
    Hwang JH; Kim HJ; Kim S; Lee Y; Shin Y; Choi S; Oh J; Kim SH; Park JH; Bhatia SK; Kim YG; Jang KS; Yang YH
    Bioresour Technol; 2024 Mar; 395():130355. PubMed ID: 38272145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum.
    Wietzke M; Bahl H
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):749-61. PubMed ID: 22576944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of the missing electron pathways for butanol synthesis in Clostridium acetobutylicum.
    Foulquier C; Rivière A; Heulot M; Dos Reis S; Perdu C; Girbal L; Pinault M; Dusséaux S; Yoo M; Soucaille P; Meynial-Salles I
    Nat Commun; 2022 Aug; 13(1):4691. PubMed ID: 35948538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formic acid triggers the "Acid Crash" of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.
    Wang S; Zhang Y; Dong H; Mao S; Zhu Y; Wang R; Luan G; Li Y
    Appl Environ Microbiol; 2011 Mar; 77(5):1674-80. PubMed ID: 21216898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation.
    Liu XB; Gu QY; Yu XB; Luo W
    J Microbiol; 2012 Dec; 50(6):1024-8. PubMed ID: 23274990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production.
    Lee JY; Jang YS; Lee J; Papoutsakis ET; Lee SY
    Biotechnol J; 2009 Oct; 4(10):1432-40. PubMed ID: 19830716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation.
    Lee J; Jang YS; Choi SJ; Im JA; Song H; Cho JH; Seung do Y; Papoutsakis ET; Bennett GN; Lee SY
    Appl Environ Microbiol; 2012 Mar; 78(5):1416-23. PubMed ID: 22210214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.
    Jang YS; Lee JY; Lee J; Park JH; Im JA; Eom MH; Lee J; Lee SH; Song H; Cho JH; Seung do Y; Lee SY
    mBio; 2012 Oct; 3(5):. PubMed ID: 23093384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.
    Morsy FM
    J Photochem Photobiol B; 2017 Apr; 169():1-6. PubMed ID: 28242562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production.
    Xu M; Zhao J; Yu L; Yang ST
    J Biotechnol; 2017 Dec; 263():36-44. PubMed ID: 29050876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio.
    Jiang Y; Xu C; Dong F; Yang Y; Jiang W; Yang S
    Metab Eng; 2009; 11(4-5):284-91. PubMed ID: 19560551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19.
    Cho C; Choe D; Jang YS; Kim KJ; Kim WJ; Cho BK; Papoutsakis ET; Bennett GN; Seung DY; Lee SY
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27918147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs.
    Cho C; Lee SY
    Biotechnol Bioeng; 2017 Feb; 114(2):374-383. PubMed ID: 27531464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Level Butanol Production from Cassava Starch by a Newly Isolated Clostridium acetobutylicum.
    Li S; Guo Y; Lu F; Huang J; Pang Z
    Appl Biochem Biotechnol; 2015 Oct; 177(4):831-41. PubMed ID: 26245261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.