These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 37196521)
1. Intercropping efficiency of Pteris vittata with two legume plants: Impacts of soil arsenic concentrations. Wang W; Yang X; Mo Q; Li Y; Meng D; Li H Ecotoxicol Environ Saf; 2023 Jul; 259():115004. PubMed ID: 37196521 [TBL] [Abstract][Full Text] [Related]
2. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba. Wan X; Lei M Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391 [TBL] [Abstract][Full Text] [Related]
3. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping. Yan Y; Yang J; Wan X; Shi H; Yang J; Ma C; Lei M; Chen T Sci Total Environ; 2022 Mar; 812():152475. PubMed ID: 34952060 [TBL] [Abstract][Full Text] [Related]
4. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Wan X; Lei M; Chen T; Yang J Sci Total Environ; 2017 Feb; 579():1467-1475. PubMed ID: 27908626 [TBL] [Abstract][Full Text] [Related]
5. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Ma J; Lei E; Lei M; Liu Y; Chen T Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933 [TBL] [Abstract][Full Text] [Related]
6. Responses of diversity and arsenic-transforming functional genes of soil microorganisms to arsenic hyperaccumulator (Pteris vittata L.)/pomegranate (Punica granatum L.) intercropping. Zhang D; Lei M; Wan X; Guo G; Zhao X; Liu Y Sci Total Environ; 2022 Dec; 850():157767. PubMed ID: 35926620 [TBL] [Abstract][Full Text] [Related]
7. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. Zeng W; Wan X; Lei M; Chen T Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467 [TBL] [Abstract][Full Text] [Related]
8. Potential evaluation of different intercropping remediation modes based on remediation efficiency and economic benefits - a case study of arsenic-contaminated soil. Yan Y; Yang J; Guo Y; Yang J; Wan X; Zhao C; Guo J; Chen T Int J Phytoremediation; 2022; 24(1):25-33. PubMed ID: 33998931 [TBL] [Abstract][Full Text] [Related]
9. Intercropped Amygdalus persica and Pteris vittata applied with additives presents a safe utilization and remediation mode for arsenic-contaminated orchard soil. Li Y; Yang J; Guo J; Zheng G; Chen T; Meng X; He M; Ma C Sci Total Environ; 2023 Jun; 879():163034. PubMed ID: 36990239 [TBL] [Abstract][Full Text] [Related]
10. Remediation of arsenic-contaminated paddy soil by intercropping aquatic vegetables and rice. Huang SY; Zhuo C; Du XY; Li HS Int J Phytoremediation; 2021; 23(10):1021-1029. PubMed ID: 33491468 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction potential of arsenic and cadmium and response of rhizosphere microbial community by intercropping with two types of hyperaccumulators. Wang X; Zhou C; Xiao X; Guo Z; Peng C; Wang X Environ Sci Pollut Res Int; 2022 Dec; 29(60):91356-91367. PubMed ID: 35896877 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of phytoextraction efficiency coupling Liu ZY; Yang R; Xiang XY; Niu LL; Yin DX Int J Phytoremediation; 2023; 25(13):1810-1818. PubMed ID: 37066697 [TBL] [Abstract][Full Text] [Related]
13. Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant Abou-Shanab RAI; Santelli CM; Sadowsky MJ Int J Phytoremediation; 2022; 24(4):420-428. PubMed ID: 34334062 [TBL] [Abstract][Full Text] [Related]
14. Bayesian network highlights the contributing factors for efficient arsenic phytoextraction by Pteris vittata in a contaminated field. Kudo H; Han N; Yokoyama D; Matsumoto T; Chien MF; Kikuchi J; Inoue C Sci Total Environ; 2023 Nov; 899():165654. PubMed ID: 37478955 [TBL] [Abstract][Full Text] [Related]
15. [As-hyperaccumulation of Pteris vittata L. as influenced by as concentrations in soils of contaminated fields]. Liu YR; Chen TB; Huang ZC; Liao XY Huan Jing Ke Xue; 2005 Sep; 26(5):181-6. PubMed ID: 16366495 [TBL] [Abstract][Full Text] [Related]
16. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study. Kohda YH; Endo G; Kitajima N; Sugawara K; Chien MF; Inoue C; Miyauchi K Sci Total Environ; 2022 Jul; 831():154830. PubMed ID: 35346712 [TBL] [Abstract][Full Text] [Related]
17. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. Yang C; Han N; Inoue C; Yang YL; Nojiri H; Ho YN; Chien MF J Hazard Mater; 2022 Jul; 434():128870. PubMed ID: 35452977 [TBL] [Abstract][Full Text] [Related]
18. Influence of Pteris vittata-maize intercropping on plant agronomic parameters and soil arsenic remediation. Wan T; Dong X; Yu L; Li D; Han H; Tu S; Wan J Chemosphere; 2024 Jul; 359():142331. PubMed ID: 38740340 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Han YH; Liu X; Rathinasabapathi B; Li HB; Chen Y; Ma LQ Environ Pollut; 2017 Aug; 227():569-577. PubMed ID: 28501771 [TBL] [Abstract][Full Text] [Related]
20. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L]. Liu QX; Yan XL; Liao XY; Lin LY; Yang J Huan Jing Ke Xue; 2015 Aug; 36(8):3056-61. PubMed ID: 26592040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]