These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37196713)

  • 1. Use of brewer's residual yeast for production of bacterial nanocellulose with Gluconacetobacter hansenii.
    de Paiva GM; de Melo LF; Pedroso FP; Mesquita PDL; Nucci ER; Santos IJB
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124897. PubMed ID: 37196713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.
    Oomuro M; Kato T; Zhou Y; Watanabe D; Motoyama Y; Yamagishi H; Akao T; Aizawa M
    J Biosci Bioeng; 2016 Nov; 122(5):577-582. PubMed ID: 27212268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.
    Yang H; Zong X; Cui C; Mu L; Zhao H
    Biotechnol Appl Biochem; 2018 Jul; 65(4):630-638. PubMed ID: 29271090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans.
    Lee S; Abraham A; Lim ACS; Choi O; Seo JG; Sang BI
    Bioresour Technol; 2021 Dec; 342():125918. PubMed ID: 34555748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinic acid production by Actinobacillus succinogenes using spent brewer's yeast hydrolysate as a nitrogen source.
    Jiang M; Chen K; Liu Z; Wei P; Ying H; Chang H
    Appl Biochem Biotechnol; 2010 Jan; 160(1):244-54. PubMed ID: 19418259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer's yeast during high-gravity brewing.
    Oomuro M; Watanabe D; Sugimoto Y; Kato T; Motoyama Y; Watanabe T; Takagi H
    J Biosci Bioeng; 2018 Dec; 126(6):736-741. PubMed ID: 29921531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites.
    Soares da Silva FAG; Fernandes M; Souto AP; Ferreira EC; Dourado F; Gama M
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9143-9154. PubMed ID: 31650194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in anti-staling brewer's yeast].
    Yang J; Wang J; Li Y; Zheng F; Zhong J; Li Q
    Sheng Wu Gong Cheng Xue Bao; 2017 Apr; 33(4):541-551. PubMed ID: 28920388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.
    Piddocke MP; Kreisz S; Heldt-Hansen HP; Nielsen KF; Olsson L
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):453-64. PubMed ID: 19343343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial nanocellulose: A versatile biopolymer production using a cost-effective wooden disc based rotary reactor.
    Jagtap A; Dastager SG
    Biopolymers; 2024 Jul; 115(4):e23577. PubMed ID: 38526043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1.
    Abol-Fotouh D; Hassan MA; Shokry H; Roig A; Azab MS; Kashyout AEB
    Sci Rep; 2020 Feb; 10(1):3491. PubMed ID: 32103077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of addition of γ-poly glutamic acid on bacterial nanocellulose production under agitated culture conditions.
    Bai Y; Tan R; Yan Y; Chen T; Feng Y; Sun Q; Li J; Wang Y; Liu F; Wang J; Zhang Y; Cheng X; Wu G
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):68. PubMed ID: 38802837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spent Brewer's Yeast as a Source of Insoluble β-Glucans.
    Avramia I; Amariei S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium.
    Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M
    N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of carbon sources from sugar industry to bacterial nanocellulose produced by Komagataeibacter xylinus.
    Jaroennonthasit W; Lam NT; Sukyai P
    Int J Biol Macromol; 2021 Nov; 191():299-304. PubMed ID: 34530037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-production of pigment and high value-added bacterial nanocellulose from
    Tan R; Sun Q; Yan Y; Chen T; Wang Y; Li J; Guo X; Fan Z; Zhang Y; Chen L; Wu G; Wu N
    Front Bioeng Biotechnol; 2023; 11():1307674. PubMed ID: 38098970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nitrogen composition on fermentation performance of brewer's yeast and the absorption of peptides with different molecular weights.
    Mo F; Zhao H; Lei H; Zhao M
    Appl Biochem Biotechnol; 2013 Nov; 171(6):1339-50. PubMed ID: 23955296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary yeast hydrolysate and brewer's yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei).
    Jin M; Xiong J; Zhou QC; Yuan Y; Wang XX; Sun P
    Fish Shellfish Immunol; 2018 Nov; 82():121-129. PubMed ID: 30099143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.