BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37197454)

  • 1. An Automated, Open-Source Workflow for the Generation of (3D) Fragment Libraries.
    Dekker T; Janssen MACH; Sutherland C; Aben RWM; Scheeren HW; Blanco-Ania D; Rutjes FPJT; Wijtmans M; de Esch IJP
    ACS Med Chem Lett; 2023 May; 14(5):583-590. PubMed ID: 37197454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Puckering the Planar Landscape of Fragments: Design and Synthesis of a 3D Cyclobutane Fragment Library.
    Hamilton DJ; Beemsterboer M; Carter CM; Elsayed J; Huiberts REM; Klein HF; O'Brien P; de Esch IJP; Wijtmans M
    ChemMedChem; 2022 May; 17(9):e202200113. PubMed ID: 35277937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries.
    Hamilton DJ; Dekker T; Klein HF; Janssen GV; Wijtmans M; O'Brien P; de Esch IJP
    Drug Discov Today Technol; 2020 Dec; 38():77-90. PubMed ID: 34895643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery.
    Morrison CN; Prosser KE; Stokes RW; Cordes A; Metzler-Nolte N; Cohen SM
    Chem Sci; 2019 Dec; 11(5):1216-1225. PubMed ID: 34123246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape from planarity in fragment-based drug discovery: A synthetic strategy analysis of synthetic 3D fragment libraries.
    Klein HF; Hamilton DJ; de Esch IJP; Wijtmans M; O'Brien P
    Drug Discov Today; 2022 Sep; 27(9):2484-2496. PubMed ID: 35636722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico construction of a focused fragment library facilitating exploration of chemical space.
    Han W; Xu X; Fan Q; Yan Y; Zhang Y; Chen Y; Liu H
    Mol Inform; 2024 Mar; 43(3):e202300256. PubMed ID: 38193642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reliable computational workflow for the selection of optimal screening libraries.
    Gilad Y; Nadassy K; Senderowitz H
    J Cheminform; 2015; 7():61. PubMed ID: 26692904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Size Matters: Diversity for Fragment Library Design.
    Shi Y; von Itzstein M
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31387220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Synthesis of 56 Shape-Diverse 3D Fragments.
    Downes TD; Jones SP; Klein HF; Wheldon MC; Atobe M; Bond PS; Firth JD; Chan NS; Waddelove L; Hubbard RE; Blakemore DC; De Fusco C; Roughley SD; Vidler LR; Whatton MA; Woolford AJ; Wrigley GL; O'Brien P
    Chemistry; 2020 Jul; 26(41):8969-8975. PubMed ID: 32315100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery.
    Liu M; Quinn RJ
    Expert Opin Drug Discov; 2019 Dec; 14(12):1283-1295. PubMed ID: 31512943
    [No Abstract]   [Full Text] [Related]  

  • 11. Route to three-dimensional fragments using diversity-oriented synthesis.
    Hung AW; Ramek A; Wang Y; Kaya T; Wilson JA; Clemons PA; Young DW
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6799-804. PubMed ID: 21482811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment-based drug discovery-the importance of high-quality molecule libraries.
    Bon M; Bilsland A; Bower J; McAulay K
    Mol Oncol; 2022 Nov; 16(21):3761-3777. PubMed ID: 35749608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-world phenomena in chemical library networks: application to fragment-based drug discovery.
    Tanaka N; Ohno K; Niimi T; Moritomo A; Mori K; Orita M
    J Chem Inf Model; 2009 Dec; 49(12):2677-86. PubMed ID: 19961207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Innovative Covalent and Noncovalent Compound Libraries: Insights from 3D Protein-Ligand Interactions.
    Xu X; Han W; Ning X; Zang C; Xu C; Zeng C; Pu C; Zhang Y; Chen Y; Liu H
    J Chem Inf Model; 2024 Mar; 64(5):1543-1559. PubMed ID: 38381562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia.
    Keserű GM; Erlanson DA; Ferenczy GG; Hann MM; Murray CW; Pickett SD
    J Med Chem; 2016 Sep; 59(18):8189-206. PubMed ID: 27124799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Applications of Diversity-Oriented Synthesis Toward Novel, 3-Dimensional Fragment Collections.
    Kidd SL; Osberger TJ; Mateu N; Sore HF; Spring DR
    Front Chem; 2018; 6():460. PubMed ID: 30386766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of targeted compound libraries based on 3D shape recognition.
    Kyrylchuk A; Kravets I; Cherednichenko A; Tararina V; Kapeliukha A; Dudenko D; Protopopov M
    Mol Divers; 2023 Apr; 27(2):939-949. PubMed ID: 35608807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycloaddition Strategies for the Synthesis of Diverse Heterocyclic Spirocycles for Fragment-Based Drug Discovery.
    King TA; Stewart HL; Mortensen KT; North AJP; Sore HF; Spring DR
    European J Org Chem; 2019 Sep; 2019(31-32):5219-5229. PubMed ID: 31598091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KNIME-CDK: Workflow-driven cheminformatics.
    Beisken S; Meinl T; Wiswedel B; de Figueiredo LF; Berthold M; Steinbeck C
    BMC Bioinformatics; 2013 Aug; 14():257. PubMed ID: 24103053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Workflow and Tools for Crystallographic Fragment Screening at the Helmholtz-Zentrum Berlin.
    Wollenhaupt J; Barthel T; Lima GMA; Metz A; Wallacher D; Jagudin E; Huschmann FU; Hauß T; Feiler CG; Gerlach M; Hellmig M; Förster R; Steffien M; Heine A; Klebe G; Mueller U; Weiss MS
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33749678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.