BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 37198175)

  • 1. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants.
    Scafaro AP; Posch BC; Evans JR; Farquhar GD; Atkin OK
    Nat Commun; 2023 May; 14(1):2820. PubMed ID: 37198175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF; Kubien DS
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?
    Šigut L; Holišová P; Klem K; Šprtová M; Calfapietra C; Marek MV; Špunda V; Urban O
    Ann Bot; 2015 Nov; 116(6):929-39. PubMed ID: 25851132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves.
    Ethier GJ; Livingston NJ; Harrison DL; Black TA; Moran JA
    Plant Cell Environ; 2006 Dec; 29(12):2168-84. PubMed ID: 17081250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photorespiration in the context of Rubisco biochemistry, CO
    Busch FA
    Plant J; 2020 Feb; 101(4):919-939. PubMed ID: 31910295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential sensitivities of photosynthetic processes and carbon loss mechanisms govern N-induced variation in net carbon assimilation rate for field-grown cotton.
    Parkash V; Snider JL; Sintim HY; Hand LC; Virk G; Pokhrel A
    J Exp Bot; 2023 Apr; 74(8):2638-2652. PubMed ID: 36715336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth.
    Dellero Y; Lamothe-Sibold M; Jossier M; Hodges M
    Plant J; 2015 Sep; 83(6):1005-18. PubMed ID: 26216646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rate-limiting step for CO(2) assimilation at different temperatures is influenced by the leaf nitrogen content in several C(3) crop species.
    Yamori W; Nagai T; Makino A
    Plant Cell Environ; 2011 May; 34(5):764-77. PubMed ID: 21241332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.
    Crafts-Brandner SJ; Salvucci ME
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13430-5. PubMed ID: 11069297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco.
    Kubien DS; Sage RF
    Plant Cell Environ; 2008 Apr; 31(4):407-18. PubMed ID: 18182015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance.
    Kaiser E; Kromdijk J; Harbinson J; Heuvelink E; Marcelis LF
    Ann Bot; 2017 Jan; 119(1):191-205. PubMed ID: 28025286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves.
    Yamori W; Evans JR; Von Caemmerer S
    Plant Cell Environ; 2010 Mar; 33(3):332-43. PubMed ID: 19895395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.
    Prins A; van Heerden PD; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2008; 59(7):1935-50. PubMed ID: 18503045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.
    Wang G; Kong F; Zhang S; Meng X; Wang Y; Meng Q
    J Exp Bot; 2015 Jun; 66(11):3027-40. PubMed ID: 25801077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Rubisco and its regulation for greater resource use efficiency.
    Carmo-Silva E; Scales JC; Madgwick PJ; Parry MA
    Plant Cell Environ; 2015 Sep; 38(9):1817-32. PubMed ID: 25123951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bundle sheath diffusive resistance to CO(2) and effectiveness of C(4) photosynthesis and refixation of photorespired CO(2) in a C(4) cycle mutant and wild-type Amaranthus edulis.
    Kiirats O; Lea PJ; Franceschi VR; Edwards GE
    Plant Physiol; 2002 Oct; 130(2):964-76. PubMed ID: 12376660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty in measurements of the photorespiratory CO
    Walker BJ; Orr DJ; Carmo-Silva E; Parry MAJ; Bernacchi CJ; Ort DR
    Photosynth Res; 2017 Jun; 132(3):245-255. PubMed ID: 28382593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco.
    von Caemmerer S; Lawson T; Oxborough K; Baker NR; Andrews TJ; Raines CA
    J Exp Bot; 2004 May; 55(400):1157-66. PubMed ID: 15107451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants.
    André MJ
    Biosystems; 2013 Aug; 113(2):115-26. PubMed ID: 23318161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.