These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37198601)

  • 1. Celloscope: a probabilistic model for marker-gene-driven cell type deconvolution in spatial transcriptomics data.
    Geras A; Darvish Shafighi S; Domżał K; Filipiuk I; Rączkowska A; Szymczak P; Toosi H; Kaczmarek L; Koperski Ł; Lagergren J; Nowis D; Szczurek E
    Genome Biol; 2023 May; 24(1):120. PubMed ID: 37198601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model.
    Zubair A; Chapple RH; Natarajan S; Wright WC; Pan M; Lee HM; Tillman H; Easton J; Geeleher P
    Nucleic Acids Res; 2022 Aug; 50(14):e80. PubMed ID: 35536287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPACEL: deep learning-based characterization of spatial transcriptome architectures.
    Xu H; Wang S; Fang M; Luo S; Chen C; Wan S; Wang R; Tang M; Xue T; Li B; Lin J; Qu K
    Nat Commun; 2023 Nov; 14(1):7603. PubMed ID: 37990022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography.
    Andersson A; Bergenstråhle J; Asp M; Bergenstråhle L; Jurek A; Fernández Navarro J; Lundeberg J
    Commun Biol; 2020 Oct; 3(1):565. PubMed ID: 33037292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.
    Long Y; Ang KS; Li M; Chong KLK; Sethi R; Zhong C; Xu H; Ong Z; Sachaphibulkij K; Chen A; Zeng L; Fu H; Wu M; Lim LHK; Liu L; Chen J
    Nat Commun; 2023 Mar; 14(1):1155. PubMed ID: 36859400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pianno: a probabilistic framework automating semantic annotation for spatial transcriptomics.
    Zhou Y; He W; Hou W; Zhu Y
    Nat Commun; 2024 Apr; 15(1):2848. PubMed ID: 38565531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpatialcoGCN: deconvolution and spatial information-aware simulation of spatial transcriptomics data via deep graph co-embedding.
    Yin W; Wan Y; Zhou Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38557675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual decoding of cell types and gene expression in spatial transcriptomics with PANDA.
    Wang MG; Chen L; Zhang XF
    Nucleic Acids Res; 2024 Nov; 52(20):12173-12190. PubMed ID: 39404057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.
    Chen J; Liu W; Luo T; Yu Z; Jiang M; Wen J; Gupta GP; Giusti P; Zhu H; Yang Y; Li Y
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPICEMIX enables integrative single-cell spatial modeling of cell identity.
    Chidester B; Zhou T; Alam S; Ma J
    Nat Genet; 2023 Jan; 55(1):78-88. PubMed ID: 36624346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint cell segmentation and cell type annotation for spatial transcriptomics.
    Littman R; Hemminger Z; Foreman R; Arneson D; Zhang G; Gómez-Pinilla F; Yang X; Wollman R
    Mol Syst Biol; 2021 Jun; 17(6):e10108. PubMed ID: 34057817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics.
    Liu Z; Wu D; Zhai W; Ma L
    Nat Commun; 2023 Aug; 14(1):4727. PubMed ID: 37550279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering spatial transcriptomics data.
    Teng H; Yuan Y; Bar-Joseph Z
    Bioinformatics; 2022 Jan; 38(4):997-1004. PubMed ID: 34623423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology.
    Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpotClean adjusts for spot swapping in spatial transcriptomics data.
    Ni Z; Prasad A; Chen S; Halberg RB; Arkin LM; Drolet BA; Newton MA; Kendziorski C
    Nat Commun; 2022 May; 13(1):2971. PubMed ID: 35624112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling for deciphering tissue microenvironment heterogeneity from spatially resolved transcriptomics.
    Zhang C; Wang L; Shi Q
    Comput Struct Biotechnol J; 2024 Dec; 23():2109-2115. PubMed ID: 38800634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics.
    Li H; Zhou J; Li Z; Chen S; Liao X; Zhang B; Zhang R; Wang Y; Sun S; Gao X
    Nat Commun; 2023 Mar; 14(1):1548. PubMed ID: 36941264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.