These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 37198691)
1. Biased data, biased AI: deep networks predict the acquisition site of TCGA images. Dehkharghanian T; Bidgoli AA; Riasatian A; Mazaheri P; Campbell CJV; Pantanowitz L; Tizhoosh HR; Rahnamayan S Diagn Pathol; 2023 May; 18(1):67. PubMed ID: 37198691 [TBL] [Abstract][Full Text] [Related]
2. Fine-Tuning and training of densenet for histopathology image representation using TCGA diagnostic slides. Riasatian A; Babaie M; Maleki D; Kalra S; Valipour M; Hemati S; Zaveri M; Safarpoor A; Shafiei S; Afshari M; Rasoolijaberi M; Sikaroudi M; Adnan M; Shah S; Choi C; Damaskinos S; Campbell CJ; Diamandis P; Pantanowitz L; Kashani H; Ghodsi A; Tizhoosh HR Med Image Anal; 2021 May; 70():102032. PubMed ID: 33773296 [TBL] [Abstract][Full Text] [Related]
3. Bias reduction in representation of histopathology images using deep feature selection. Asilian Bidgoli A; Rahnamayan S; Dehkharghanian T; Grami A; Tizhoosh HR Sci Rep; 2022 Nov; 12(1):19994. PubMed ID: 36411301 [TBL] [Abstract][Full Text] [Related]
4. Normalization of HE-stained histological images using cycle consistent generative adversarial networks. Runz M; Rusche D; Schmidt S; Weihrauch MR; Hesser J; Weis CA Diagn Pathol; 2021 Aug; 16(1):71. PubMed ID: 34362386 [TBL] [Abstract][Full Text] [Related]
5. Automated curation of large-scale cancer histopathology image datasets using deep learning. Hilgers L; Ghaffari Laleh N; West NP; Westwood A; Hewitt KJ; Quirke P; Grabsch HI; Carrero ZI; Matthaei E; Loeffler CML; Brinker TJ; Yuan T; Brenner H; Brobeil A; Hoffmeister M; Kather JN Histopathology; 2024 Jun; 84(7):1139-1153. PubMed ID: 38409878 [TBL] [Abstract][Full Text] [Related]
6. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492 [TBL] [Abstract][Full Text] [Related]
7. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
8. Colour adaptive generative networks for stain normalisation of histopathology images. Cong C; Liu S; Di Ieva A; Pagnucco M; Berkovsky S; Song Y Med Image Anal; 2022 Nov; 82():102580. PubMed ID: 36113326 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer. Rączkowska A; Paśnik I; Kukiełka M; Nicoś M; Budzinska MA; Kucharczyk T; Szumiło J; Krawczyk P; Crosetto N; Szczurek E BMC Cancer; 2022 Sep; 22(1):1001. PubMed ID: 36131239 [TBL] [Abstract][Full Text] [Related]
10. Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning. Zhang W; Wang W; Xu Y; Wu K; Shi J; Li M; Feng Z; Liu Y; Zheng Y; Wu H Lab Invest; 2024 Aug; 104(8):102094. PubMed ID: 38871058 [TBL] [Abstract][Full Text] [Related]
11. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning. Jang HJ; Lee A; Kang J; Song IH; Lee SH World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794 [TBL] [Abstract][Full Text] [Related]
12. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis. Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709 [TBL] [Abstract][Full Text] [Related]
13. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016 [TBL] [Abstract][Full Text] [Related]
14. The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification. Altini N; Marvulli TM; Zito FA; Caputo M; Tommasi S; Azzariti A; Brunetti A; Prencipe B; Mattioli E; De Summa S; Bevilacqua V Comput Methods Programs Biomed; 2023 Jun; 234():107511. PubMed ID: 37011426 [TBL] [Abstract][Full Text] [Related]
15. Computer-extracted features of nuclear morphology in hematoxylin and eosin images distinguish stage II and IV colon tumors. Kumar N; Verma R; Chen C; Lu C; Fu P; Willis J; Madabhushi A J Pathol; 2022 May; 257(1):17-28. PubMed ID: 35007352 [TBL] [Abstract][Full Text] [Related]
16. The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images. Boschman J; Farahani H; Darbandsari A; Ahmadvand P; Van Spankeren A; Farnell D; Levine AB; Naso JR; Churg A; Jones SJ; Yip S; Köbel M; Huntsman DG; Gilks CB; Bashashati A J Pathol; 2022 Jan; 256(1):15-24. PubMed ID: 34543435 [TBL] [Abstract][Full Text] [Related]
17. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology. Tellez D; Litjens G; Bándi P; Bulten W; Bokhorst JM; Ciompi F; van der Laak J Med Image Anal; 2019 Dec; 58():101544. PubMed ID: 31466046 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology. Bidgoli AA; Rahnamayan S; Dehkharghanian T; Riasatian A; Kalra S; Zaveri M; Campbell CJV; Parwani A; Pantanowitz L; Tizhoosh HR Artif Intell Med; 2022 Oct; 132():102368. PubMed ID: 36207081 [TBL] [Abstract][Full Text] [Related]
19. A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues. Gallego J; Swiderska-Chadaj Z; Markiewicz T; Yamashita M; Gabaldon MA; Gertych A Comput Med Imaging Graph; 2021 Apr; 89():101865. PubMed ID: 33548823 [TBL] [Abstract][Full Text] [Related]
20. Detection of Breast Cancer with Lightweight Deep Neural Networks for Histology Image Classification. Laxmisagar HS; Hanumantharaju MC Crit Rev Biomed Eng; 2022; 50(2):1-19. PubMed ID: 36374820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]