BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37198775)

  • 1. Compressible lattice Boltzmann method with rotating overset grids.
    Yoo H; Wissocq G; Jacob J; Favier J; Sagaut P
    Phys Rev E; 2023 Apr; 107(4-2):045306. PubMed ID: 37198775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropic lattice Boltzmann model for compressible flows.
    Frapolli N; Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):061301. PubMed ID: 26764625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recursive regularization step for high-order lattice Boltzmann methods.
    Coreixas C; Wissocq G; Puigt G; Boussuge JF; Sagaut P
    Phys Rev E; 2017 Sep; 96(3-1):033306. PubMed ID: 29346972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics.
    Feng Y; Guo S; Jacob J; Sagaut P
    Phys Rev E; 2020 Jun; 101(6-1):063302. PubMed ID: 32688460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods.
    Coreixas C; Wissocq G; Chopard B; Latt J
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190397. PubMed ID: 32564722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number.
    Qu K; Shu C; Chew YT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036706. PubMed ID: 17500825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-Lagrangian lattice Boltzmann method for compressible flows.
    Wilde D; Krämer A; Reith D; Foysi H
    Phys Rev E; 2020 May; 101(5-1):053306. PubMed ID: 32575305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice boltzmann method for compressible flows with high mach numbers.
    Yu H; Zhao K
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3867-70. PubMed ID: 11088166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
    Borazjani I; Ge L; Le T; Sotiropoulos F
    Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes.
    Saadat MH; Bösch F; Karlin IV
    Phys Rev E; 2020 Feb; 101(2-1):023311. PubMed ID: 32168653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid lattice Boltzmann method on overlapping grids.
    Di Ilio G; Chiappini D; Ubertini S; Bella G; Succi S
    Phys Rev E; 2017 Jan; 95(1-1):013309. PubMed ID: 28208470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria.
    Latt J; Coreixas C; Beny J; Parmigiani A
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190559. PubMed ID: 32833583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of the lattice Boltzmann method for describing the behavior of a gas in the continuum limit.
    Kataoka T; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056709. PubMed ID: 21230621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of High-Viscosity Generalized Newtonian Fluid Flows in the Mixing Section of a Screw Extruder Using the Lattice Boltzmann Model.
    Liu L; Meng Z; Zhang Y; Sun Y
    ACS Omega; 2023 Dec; 8(50):47991-48018. PubMed ID: 38144068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.