These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37198783)

  • 21. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d-dimensional hypercubic lattices: A series expansion study.
    Singh RRP; Young AP
    Phys Rev E; 2017 Aug; 96(2-1):022139. PubMed ID: 28950636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cluster percolation in the two-dimensional Ising spin glass.
    Münster L; Weigel M
    Phys Rev E; 2023 May; 107(5-1):054103. PubMed ID: 37329020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loop-Cluster Coupling and Algorithm for Classical Statistical Models.
    Zhang L; Michel M; Elçi EM; Deng Y
    Phys Rev Lett; 2020 Nov; 125(20):200603. PubMed ID: 33258631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Upper and lower critical decay exponents of Ising ferromagnets with long-range interaction.
    Horita T; Suwa H; Todo S
    Phys Rev E; 2017 Jan; 95(1-1):012143. PubMed ID: 28208323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geometric Explanation of Anomalous Finite-Size Scaling in High Dimensions.
    Grimm J; Elçi EM; Zhou Z; Garoni TM; Deng Y
    Phys Rev Lett; 2017 Mar; 118(11):115701. PubMed ID: 28368654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional Ising model on random lattices with constant coordination number.
    Schrauth M; Richter JAJ; Portela JSE
    Phys Rev E; 2018 Feb; 97(2-1):022144. PubMed ID: 29548254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping of the Bak, Tang, and Wiesenfeld sandpile model on a two-dimensional Ising-correlated percolation lattice to the two-dimensional self-avoiding random walk.
    Cheraghalizadeh J; Najafi MN; Dashti-Naserabadi H; Mohammadzadeh H
    Phys Rev E; 2017 Nov; 96(5-1):052127. PubMed ID: 29347657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Random-Length Random Walks and Finite-Size Scaling in High Dimensions.
    Zhou Z; Grimm J; Fang S; Deng Y; Garoni TM
    Phys Rev Lett; 2018 Nov; 121(18):185701. PubMed ID: 30444384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Logarithmic finite-size scaling of the self-avoiding walk at four dimensions.
    Fang S; Deng Y; Zhou Z
    Phys Rev E; 2021 Dec; 104(6-1):064108. PubMed ID: 35030932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Invaded cluster algorithm for a tricritical point in a diluted Potts model.
    Balog I; Uzelac K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011103. PubMed ID: 17677406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems.
    Dashti-Naserabadi H; Najafi MN
    Phys Rev E; 2017 Oct; 96(4-1):042115. PubMed ID: 29347586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical interfaces and duality in the Ashkin-Teller model.
    Picco M; Santachiara R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061124. PubMed ID: 21797319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of partition functions by measuring component distributions.
    Hartmann AK
    Phys Rev Lett; 2005 Feb; 94(5):050601. PubMed ID: 15783622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cluster-size heterogeneity in the two-dimensional Ising model.
    Jo WS; Yi SD; Baek SK; Kim BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):032103. PubMed ID: 23030964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-size effects in film geometry with nonperiodic boundary conditions: Gaussian model and renormalization-group theory at fixed dimension.
    Kastening B; Dohm V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061106. PubMed ID: 20866377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crossover and self-averaging in the two-dimensional site-diluted Ising model: application of probability-changing cluster algorithm.
    Tomita Y; Okabe Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036114. PubMed ID: 11580401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Backbone and shortest-path exponents of the two-dimensional Q-state Potts model.
    Fang S; Ke D; Zhong W; Deng Y
    Phys Rev E; 2022 Apr; 105(4-1):044122. PubMed ID: 35590541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics around the site percolation threshold on high-dimensional hypercubic lattices.
    Biroli G; Charbonneau P; Hu Y
    Phys Rev E; 2019 Feb; 99(2-1):022118. PubMed ID: 30934351
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exact Logarithmic Four-Point Functions in the Critical Two-Dimensional Ising Model.
    Gori G; Viti J
    Phys Rev Lett; 2017 Nov; 119(19):191601. PubMed ID: 29219501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.