These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37198805)

  • 1. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle.
    Zhai RX; Cui FM; Ma YH; Sun CP; Dong H
    Phys Rev E; 2023 Apr; 107(4):L042101. PubMed ID: 37198805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
    Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Carnot efficiency in a finite-power Brownian Carnot cycle with arbitrary temperature difference.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2022 Mar; 105(3-1):034102. PubMed ID: 35428092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2021 Apr; 103(4-1):042125. PubMed ID: 34006002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carnot cycle at finite power: attainability of maximal efficiency.
    Allahverdyan AE; Hovhannisyan KV; Melkikh AV; Gevorkian SG
    Phys Rev Lett; 2013 Aug; 111(5):050601. PubMed ID: 23952379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study.
    Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F
    Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency at maximum power output of an irreversible Carnot-like cycle with internally dissipative friction.
    Wang J; He J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051112. PubMed ID: 23214743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal finite-time Brownian Carnot engine.
    Frim AG; DeWeese MR
    Phys Rev E; 2022 May; 105(5):L052103. PubMed ID: 35706186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The power of a critical heat engine.
    Campisi M; Fazio R
    Nat Commun; 2016 Jun; 7():11895. PubMed ID: 27320127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms.
    Ye Z; Hu Y; He J; Wang J
    Sci Rep; 2017 Jul; 7(1):6289. PubMed ID: 28740216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.
    Wu F; He J; Ma Y; Wang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.