These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37198820)
1. Chaotic renormalization group flow and entropy gradients over Haros graphs. Calero-Sanz J; Luque B; Lacasa L Phys Rev E; 2023 Apr; 107(4-1):044217. PubMed ID: 37198820 [TBL] [Abstract][Full Text] [Related]
2. Logistic map trajectory distributions: Renormalization-group, entropy, and criticality at the transition to chaos. Diaz-Ruelas A; Baldovin F; Robledo A Chaos; 2021 Mar; 31(3):033112. PubMed ID: 33810710 [TBL] [Abstract][Full Text] [Related]
3. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics. Buhl M; Kennel MB Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984 [TBL] [Abstract][Full Text] [Related]
4. Using heteroclinic orbits to quantify topological entropy in fluid flows. Sattari S; Chen Q; Mitchell KA Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190 [TBL] [Abstract][Full Text] [Related]
5. Horizontal visibility graphs generated by type-I intermittency. Núñez ÁM; Luque B; Lacasa L; Gómez JP; Robledo A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052801. PubMed ID: 23767578 [TBL] [Abstract][Full Text] [Related]
6. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method. Azimi S; Ashtari O; Schneider TM Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314 [TBL] [Abstract][Full Text] [Related]
7. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Luque B; Lacasa L; Ballesteros FJ; Robledo A Chaos; 2012 Mar; 22(1):013109. PubMed ID: 22462985 [TBL] [Abstract][Full Text] [Related]
8. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
9. Feigenbaum graphs: a complex network perspective of chaos. Luque B; Lacasa L; Ballesteros FJ; Robledo A PLoS One; 2011; 6(9):e22411. PubMed ID: 21915254 [TBL] [Abstract][Full Text] [Related]
10. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related]
11. From generalized synchrony to topological decoherence: emergent sets in coupled chaotic systems. Barreto E; So P; Gluckman BJ; Schiff SJ Phys Rev Lett; 2000 Feb; 84(8):1689-92. PubMed ID: 11017601 [TBL] [Abstract][Full Text] [Related]
12. Homoclinic Renormalization Group Flows, or When Relevant Operators Become Irrelevant. Jepsen CB; Popov FK Phys Rev Lett; 2021 Oct; 127(14):141602. PubMed ID: 34652210 [TBL] [Abstract][Full Text] [Related]
13. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs. Bizhani G; Grassberger P; Paczuski M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066111. PubMed ID: 22304159 [TBL] [Abstract][Full Text] [Related]
14. Exact Renormalization Groups As a Form of Entropic Dynamics. Pessoa P; Caticha A Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265116 [TBL] [Abstract][Full Text] [Related]
15. Chaotic Entanglement: Entropy and Geometry. Morena MA; Short KM Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34681978 [TBL] [Abstract][Full Text] [Related]
16. Renormalization group analysis of the Anderson model on random regular graphs. Vanoni C; Altshuler BL; Kravtsov VE; Scardicchio A Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2401955121. PubMed ID: 38990943 [TBL] [Abstract][Full Text] [Related]
17. State-space renormalization group theory of nonequilibrium reaction networks: Exact solutions for hypercubic lattices in arbitrary dimensions. Yu Q; Tu Y Phys Rev E; 2022 Apr; 105(4-1):044140. PubMed ID: 35590650 [TBL] [Abstract][Full Text] [Related]
18. Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map. Rajpathak B; Pillai HK; Bandyopadhyay S Chaos; 2015 Oct; 25(10):103101. PubMed ID: 26520067 [TBL] [Abstract][Full Text] [Related]
19. Classical dynamics on graphs. Barra F; Gaspard P Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066215. PubMed ID: 11415214 [TBL] [Abstract][Full Text] [Related]
20. A note on chaotic unimodal maps and applications. Zhou CT; He XT; Yu MY; Chew LY; Wang XG Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]