These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Lee A; Jin H; Dang HW; Choi KH; Ahn KH Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms and modeling of electrohydrodynamic phenomena. Gao D; Yao D; Leist SK; Fei Y; Zhou J Int J Bioprint; 2019; 5(1):166. PubMed ID: 32782978 [TBL] [Abstract][Full Text] [Related]
4. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning. Phung TH; Oh S; Kwon KS J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021 [TBL] [Abstract][Full Text] [Related]
5. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867 [TBL] [Abstract][Full Text] [Related]
6. On the Stability of Electrohydrodynamic Jet Printing Using Poly(ethylene oxide) Solvent-Based Inks. Ramon A; Liashenko I; Rosell-Llompart J; Cabot A Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334544 [TBL] [Abstract][Full Text] [Related]
7. Drop-on-demand printing of carbon black ink by electrohydrodynamic jet printing. Back SY; Song CH; Yu S; Lee HJ; Kim BS; Yang NY; Jeong SH; Ahn H J Nanosci Nanotechnol; 2012 Jan; 12(1):446-50. PubMed ID: 22524000 [TBL] [Abstract][Full Text] [Related]
9. Designs and applications of electrohydrodynamic 3D printing. Gao D; Zhou JG Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979 [TBL] [Abstract][Full Text] [Related]
10. Phase-field simulations of electrohydrodynamic jetting for printing nano-to-microscopic constructs. Singh SK; Subramanian A RSC Adv; 2020 Jun; 10(42):25022-25028. PubMed ID: 35517438 [TBL] [Abstract][Full Text] [Related]
11. Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing. Pan Y; Zeng L Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30699909 [TBL] [Abstract][Full Text] [Related]
12. Improved Electrical Properties of EHD Jet-Patterned MoS Can TTT; Choi WS Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616104 [TBL] [Abstract][Full Text] [Related]
13. Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect Transistors and Logic Gates. Li Z; Jeong YJ; Hong J; Kwon HJ; Ye H; Wang R; Choi HH; Kong H; Hwang H; Kim SH; Tang X ACS Appl Mater Interfaces; 2022 Feb; 14(5):7073-7081. PubMed ID: 35080374 [TBL] [Abstract][Full Text] [Related]
14. Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments. Luedtke WD; Landman U; Chiu YH; Levandier DJ; Dressler RA; Sok S; Gordon MS J Phys Chem A; 2008 Oct; 112(40):9628-49. PubMed ID: 18828572 [TBL] [Abstract][Full Text] [Related]
15. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing. Lee H; Seong B; Kim J; Jang Y; Byun D Small; 2014 Oct; 10(19):3918-22. PubMed ID: 24925213 [TBL] [Abstract][Full Text] [Related]
16. Capillary-dominated electrified jets of a viscous leaky dielectric liquid. Reznik SN; Zussman E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026313. PubMed ID: 20365657 [TBL] [Abstract][Full Text] [Related]
18. An experimental study of liquid micro-jets produced with a gas dynamic virtual nozzle under the influence of an electric field. Zupan B; Peña-Murillo GE; Zahoor R; Gregorc J; Šarler B; Knoška J; Gañán-Calvo AM; Chapman HN; Bajt S Front Mol Biosci; 2023; 10():1006733. PubMed ID: 36743214 [TBL] [Abstract][Full Text] [Related]
19. Stabilization of liquid instabilities with ionized gas jets. Park S; Choe W; Lee H; Park JY; Kim J; Moon SY; Cvelbar U Nature; 2021 Apr; 592(7852):49-53. PubMed ID: 33790448 [TBL] [Abstract][Full Text] [Related]
20. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties. Chang J; He J; Lei Q; Li D ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]