These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37198862)

  • 1. Complexity in the Lipkin-Meshkov-Glick model.
    Pal K; Pal K; Sarkar T
    Phys Rev E; 2023 Apr; 107(4-1):044130. PubMed ID: 37198862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures.
    Bao J; Liu YH; Guo B
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34517354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections.
    Ribeiro P; Vidal J; Mosseri R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021106. PubMed ID: 18850785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Markovianity of a Central Spin Interacting with a Lipkin-Meshkov-Glick Bath via a Conditional Past-Future Correlation.
    Han L; Zou J; Li H; Shao B
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models.
    Gonzalez D; Gutiérrez-Ruiz D; Vergara JD
    Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nielsen complexity of coherent spin state operators.
    Pal K; Pal K; Sarkar T
    Phys Rev E; 2022 Jun; 105(6-1):064117. PubMed ID: 35854481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-size scaling exponents of the Lipkin-Meshkov-Glick model.
    Dusuel S; Vidal J
    Phys Rev Lett; 2004 Dec; 93(23):237204. PubMed ID: 15601198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
    Zhou Y; Wang JW; Cao LZ; Wang GH; Shi ZY; Lü DY; Huang HB; Hu CS
    Rep Prog Phys; 2024 Sep; 87(10):. PubMed ID: 39260394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model.
    Orús R; Dusuel S; Vidal J
    Phys Rev Lett; 2008 Jul; 101(2):025701. PubMed ID: 18764198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shortcut to adiabaticity in the Lipkin-Meshkov-Glick model.
    Campbell S; De Chiara G; Paternostro M; Palma GM; Fazio R
    Phys Rev Lett; 2015 May; 114(17):177206. PubMed ID: 25978261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-state quantum phase transitions and the entropy of the work distribution in the anharmonic Lipkin-Meshkov-Glick model.
    Zhang H; Qian Y; Niu ZX; Wang Q
    Phys Rev E; 2024 Jun; 109(6-1):064110. PubMed ID: 39021010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model.
    Kopylov W; Schaller G; Brandes T
    Phys Rev E; 2017 Jul; 96(1-1):012153. PubMed ID: 29347272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Static aspects.
    Gamito J; Khalouf-Rivera J; Arias JM; Pérez-Fernández P; Pérez-Bernal F
    Phys Rev E; 2022 Oct; 106(4-1):044125. PubMed ID: 36397542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization measures of parity adapted U(D)-spin coherent states applied to the phase space analysis of the D-level Lipkin-Meshkov-Glick model.
    Mayorgas A; Guerrero J; Calixto M
    Phys Rev E; 2023 Aug; 108(2-1):024107. PubMed ID: 37723708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED.
    Morrison S; Parkins AS
    Phys Rev Lett; 2008 Feb; 100(4):040403. PubMed ID: 18352244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model.
    Opatrný T; Richterek L; Opatrný M
    Sci Rep; 2018 Jan; 8(1):1984. PubMed ID: 29386576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Dynamical aspects.
    Khalouf-Rivera J; Gamito J; Pérez-Bernal F; Arias JM; Pérez-Fernández P
    Phys Rev E; 2023 Jun; 107(6-1):064134. PubMed ID: 37464676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the Lipkin-Meshkov-Glick model excited-state quantum phase transition using dynamical and statistical properties of the diagonal entropy.
    Wang Q; Pérez-Bernal F
    Phys Rev E; 2021 Mar; 103(3-1):032109. PubMed ID: 33862777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-N scaling behavior of the Lipkin-Meshkov-Glick model.
    Leyvraz F; Heiss WD
    Phys Rev Lett; 2005 Jul; 95(5):050402. PubMed ID: 16090853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamical limit of the Lipkin-Meshkov-Glick model.
    Ribeiro P; Vidal J; Mosseri R
    Phys Rev Lett; 2007 Aug; 99(5):050402. PubMed ID: 17930734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.