These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37198866)
1. Relation between the degree and betweenness centrality distribution in complex networks. Masoomy H; Adami V; Najafi MN Phys Rev E; 2023 Apr; 107(4-1):044303. PubMed ID: 37198866 [TBL] [Abstract][Full Text] [Related]
2. Graphicality conditions for general scale-free complex networks and their application to visibility graphs. Rodríguez MA Phys Rev E; 2016 Jul; 94(1-1):012314. PubMed ID: 27575155 [TBL] [Abstract][Full Text] [Related]
3. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models. Wang W; Metzler R; Cherstvy AG Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015 [TBL] [Abstract][Full Text] [Related]
4. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems. Dashti-Naserabadi H; Najafi MN Phys Rev E; 2017 Oct; 96(4-1):042115. PubMed ID: 29347586 [TBL] [Abstract][Full Text] [Related]
5. Scaling Exponents of Time Series Data: A Machine Learning Approach. Raubitzek S; Corpaci L; Hofer R; Mallinger K Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551 [TBL] [Abstract][Full Text] [Related]
6. Universal behavior of load distribution in scale-free networks. Goh KI; Kahng B; Kim D Phys Rev Lett; 2001 Dec; 87(27 Pt 1):278701. PubMed ID: 11800921 [TBL] [Abstract][Full Text] [Related]
7. Proof of breaking of self-organized criticality in a nonconservative abelian sandpile model. Tsuchiya T; Katori M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1183-8. PubMed ID: 11046392 [TBL] [Abstract][Full Text] [Related]
8. Critical properties of a dissipative sandpile model on small-world networks. Bhaumik H; Santra SB Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062817. PubMed ID: 24483521 [TBL] [Abstract][Full Text] [Related]
9. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics. Grzesiek A; Gajda J; Thapa S; Wyłomańska A Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586 [TBL] [Abstract][Full Text] [Related]
10. Relating the large-scale structure of time series and visibility networks. Rodríguez MA Phys Rev E; 2017 Jun; 95(6-1):062309. PubMed ID: 28709363 [TBL] [Abstract][Full Text] [Related]
11. Sandpile on scale-free networks. Goh KI; Lee DS; Kahng B; Kim D Phys Rev Lett; 2003 Oct; 91(14):148701. PubMed ID: 14611564 [TBL] [Abstract][Full Text] [Related]
12. Memory effects in fractional Brownian motion with Hurst exponent H<1/3. Bologna M; Vanni F; Krokhin A; Grigolini P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020102. PubMed ID: 20866763 [TBL] [Abstract][Full Text] [Related]
13. Range-limited centrality measures in complex networks. Ercsey-Ravasz M; Lichtenwalter RN; Chawla NV; Toroczkai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066103. PubMed ID: 23005158 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the Solar Activity Using the Visibility Graph Method. Zurita-Valencia T; Muñoz V Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832708 [TBL] [Abstract][Full Text] [Related]
15. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks. Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141 [TBL] [Abstract][Full Text] [Related]
16. Influences of degree inhomogeneity on average path length and random walks in disassortative scale-free networks. Zhang Z; Zhang Y; Zhou S; Yin M; Guan J J Math Phys; 2009 Mar; 50(3):033514. PubMed ID: 32255840 [TBL] [Abstract][Full Text] [Related]
17. Fractality in complex networks: critical and supercritical skeletons. Kim JS; Goh KI; Salvi G; Oh E; Kahng B; Kim D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016110. PubMed ID: 17358227 [TBL] [Abstract][Full Text] [Related]
18. Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions. Liu JL; Yu ZG; Anh V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032814. PubMed ID: 24730906 [TBL] [Abstract][Full Text] [Related]
19. Sandpile models and random walkers on finite lattices. Shilo Y; Biham O Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066102. PubMed ID: 16241299 [TBL] [Abstract][Full Text] [Related]
20. Sandpile cascades on oscillator networks: The BTW model meets Kuramoto. Mikaberidze G; D'Souza RM Chaos; 2022 May; 32(5):053121. PubMed ID: 35649989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]