BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37199234)

  • 21. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramine.
    Kerstens HM; Poddighe PJ; Hanselaar AG
    J Histochem Cytochem; 1995 Apr; 43(4):347-52. PubMed ID: 7897179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Branched tyramides from males of the harvester ant, Pogonomyrmex badius.
    Jones TH; Chinta SP; Vander Meer RK; Cartwright KC
    Naturwissenschaften; 2023 Dec; 110(6):57. PubMed ID: 38060057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel application of tyramide signal amplification (TSA): ultrastructural visualization of double-labeled immunofluorescent axonal profiles.
    Büki A; Walker SA; Stone JR; Povlishock JT
    J Histochem Cytochem; 2000 Jan; 48(1):153-61. PubMed ID: 10653596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Amplification of immunologic reactions using catalytic deposition at the reaction sites of tyramine derivatives. A decisive gain in sensitivity in immunohistochemistry and in situ hybridization].
    Plenat F; Picard E; Antunes L; Vignaud JM; Marie B; Chalabreysse P; Muhale F
    Ann Pathol; 1997 Mar; 17(1):17-23. PubMed ID: 9162152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyramide signal amplification (TSA) systems for the enhancement of ISH signals in cytogenetics.
    Bobrow MN; Moen PT
    Curr Protoc Cytom; 2001 May; Chapter 8():Unit 8.9. PubMed ID: 18770747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Commentary on a Classic JHC Article on Intracellular Hyaluronan Associated With the Mitotic Spindle.
    Evanko SP; Wight TN
    J Histochem Cytochem; 2023 Aug; 71(8):459-460. PubMed ID: 37455577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitive mRNA detection by fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification.
    van de Corput MP; Dirks RW; van Gijlswijk RP; van Binnendijk E; Hattinger CM; de Paus RA; Landegent JE; Raap AK
    J Histochem Cytochem; 1998 Nov; 46(11):1249-59. PubMed ID: 9774624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and purification of horseradish peroxidase-labeled oligonucleotides for tyramide-based fluorescence in situ hybridization.
    van Gijlswijk RP; van de Corput MP; Bezrookove V; Wiegant J; Tanke HJ; Raap AK
    Histochem Cell Biol; 2000 Mar; 113(3):175-80. PubMed ID: 10817671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal amplification in the detection of single-copy DNA and RNA by enzyme-catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29-tyramide.
    Schmidt BF; Chao J; Zhu Z; DeBiasio RL; Fisher G
    J Histochem Cytochem; 1997 Mar; 45(3):365-73. PubMed ID: 9071318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous fluorescence in situ hybridization of mRNA and rRNA for the detection of gene expression in environmental microbes.
    Pernthaler A; Pernthaler J
    Methods Enzymol; 2005; 397():352-71. PubMed ID: 16260302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain.
    Lauter G; Söll I; Hauptmann G
    Neural Dev; 2011 Apr; 6():10. PubMed ID: 21466670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification.
    Coleman JR; Culley DE; Chrisler WB; Brockman FJ
    J Microbiol Methods; 2007 Dec; 71(3):246-55. PubMed ID: 17949838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive Multiplexed Fluorescent In Situ Hybridization Using Enhanced Tyramide Signal Amplification and Its Combination with Immunofluorescent Protein Visualization in Zebrafish.
    Lauter G; Söll I; Hauptmann G
    Methods Mol Biol; 2020; 2047():397-409. PubMed ID: 31552667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amplification methods to increase the sensitivity of in situ hybridization: play card(s).
    Speel EJ; Hopman AH; Komminoth P
    J Histochem Cytochem; 1999 Mar; 47(3):281-8. PubMed ID: 10026231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Hybrid Detection Method Based on Peroxidase-mediated Signal Amplification and Click Chemistry for Highly Sensitive Background-free Immunofluorescent Staining.
    Antonov SA; Novosadova EV; Kobylansky AG; Tarantul VZ; Grivennikov IA
    J Histochem Cytochem; 2019 Oct; 67(10):771-782. PubMed ID: 31294668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH).
    Kubota K; Ohashi A; Imachi H; Harada H
    J Microbiol Methods; 2006 Sep; 66(3):521-8. PubMed ID: 16545875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection and signal amplification in zebrafish RNA FISH.
    Hauptmann G; Lauter G; Söll I
    Methods; 2016 Apr; 98():50-59. PubMed ID: 26821229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection.
    Ness JM; Akhtar RS; Latham CB; Roth KA
    J Histochem Cytochem; 2003 Aug; 51(8):981-7. PubMed ID: 12871979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction to Immunohistochemistry: From to Evolving Science to Timeless Art.
    Del Valle L
    Methods Mol Biol; 2022; 2422():1-16. PubMed ID: 34859395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of immunologic amplification vs enzymatic deposition of fluorochrome-conjugated tyramide as detection systems for FISH.
    Macechko PT; Krueger L; Hirsch B; Erlandsen SL
    J Histochem Cytochem; 1997 Mar; 45(3):359-63. PubMed ID: 9071317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.