These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 3719925)
1. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Spach MS; Dolber PC Circ Res; 1986 Mar; 58(3):356-71. PubMed ID: 3719925 [TBL] [Abstract][Full Text] [Related]
2. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Spach MS; Dolber PC; Heidlage JF Circ Res; 1988 Apr; 62(4):811-32. PubMed ID: 2450697 [TBL] [Abstract][Full Text] [Related]
3. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Spach MS; Miller WT; Miller-Jones E; Warren RB; Barr RC Circ Res; 1979 Aug; 45(2):188-204. PubMed ID: 445703 [TBL] [Abstract][Full Text] [Related]
4. Cell size and communication: role in structural and electrical development and remodeling of the heart. Spach MS; Heidlage JF; Barr RC; Dolber PC Heart Rhythm; 2004 Oct; 1(4):500-15. PubMed ID: 15851207 [TBL] [Abstract][Full Text] [Related]
5. Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax, tau foot, and the propagation safety factor. Spach MS; Dolber PC; Heidlage JF; Kootsey JM; Johnson EA Circ Res; 1987 Feb; 60(2):206-19. PubMed ID: 2436826 [TBL] [Abstract][Full Text] [Related]
6. The nature of electrical propagation in cardiac muscle. Spach MS; Kootsey JM Am J Physiol; 1983 Jan; 244(1):H3-22. PubMed ID: 6336913 [TBL] [Abstract][Full Text] [Related]
7. Interaction of inhomogeneities of repolarization with anisotropic propagation in dog atria. A mechanism for both preventing and initiating reentry. Spach MS; Dolber PC; Heidlage JF Circ Res; 1989 Dec; 65(6):1612-31. PubMed ID: 2582593 [TBL] [Abstract][Full Text] [Related]
8. Anisotropic conduction properties of canine ventricular muscles. Influence of high extracellular K+ concentration and stimulation frequency. Tsuboi N; Kodama I; Toyama J; Yamada K Jpn Circ J; 1985 May; 49(5):487-98. PubMed ID: 4021064 [TBL] [Abstract][Full Text] [Related]
9. A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle. Wu J; Johnson EA; Kootsey JM Biophys J; 1996 Nov; 71(5):2427-39. PubMed ID: 8913583 [TBL] [Abstract][Full Text] [Related]
10. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Spach MS; Boineau JP Pacing Clin Electrophysiol; 1997 Feb; 20(2 Pt 2):397-413. PubMed ID: 9058844 [TBL] [Abstract][Full Text] [Related]
11. Structure of canine Bachmann's bundle related to propagation of excitation. Dolber PC; Spach MS Am J Physiol; 1989 Nov; 257(5 Pt 2):H1446-57. PubMed ID: 2589500 [TBL] [Abstract][Full Text] [Related]
12. A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue. Rudy Y; Quan WL Circ Res; 1987 Dec; 61(6):815-23. PubMed ID: 3677338 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age. Koura T; Hara M; Takeuchi S; Ota K; Okada Y; Miyoshi S; Watanabe A; Shiraiwa K; Mitamura H; Kodama I; Ogawa S Circulation; 2002 Apr; 105(17):2092-8. PubMed ID: 11980690 [TBL] [Abstract][Full Text] [Related]
14. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Roberge FA; Vinet A; Victorri B Circ Res; 1986 Apr; 58(4):461-75. PubMed ID: 3698214 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study. Spach MS; Heidlage JF; Dolber PC; Barr RC Heart Rhythm; 2007 Feb; 4(2):175-85. PubMed ID: 17275753 [TBL] [Abstract][Full Text] [Related]
16. A multidimensional model of cellular effects on the spread of electrotonic currents and on propagating action potentials. Spach MS; Heidlage JF Crit Rev Biomed Eng; 1992; 20(3-4):141-69. PubMed ID: 1478090 [TBL] [Abstract][Full Text] [Related]
17. Extracellular discontinuities in cardiac muscle: evidence for capillary effects on the action potential foot. Spach MS; Heidlage JF; Dolber PC; Barr RC Circ Res; 1998 Nov; 83(11):1144-64. PubMed ID: 9831709 [TBL] [Abstract][Full Text] [Related]
18. Low conduction in cardiac muscle. Biophysical model. Lieberman M; Kootsey JM; Johnson EA; Sawanobori T Biophys J; 1973 Jan; 13(1):37-55. PubMed ID: 4709519 [TBL] [Abstract][Full Text] [Related]
19. Effect of varying pacing waveform shapes on propagation and hemodynamics in the rabbit heart. Thakor NV; Ranjan R; Rajasekhar S; Mower MM Am J Cardiol; 1997 Mar; 79(6A):36-43. PubMed ID: 9080865 [TBL] [Abstract][Full Text] [Related]
20. Basic cardiac electrophysiology and mechanisms of antiarrhythmic agents. Perry RS; Illsley SS Am J Hosp Pharm; 1986 Apr; 43(4):957-74. PubMed ID: 2871752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]