These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37199345)

  • 1. Anomalous DNA hybridisation kinetics on gold nanorods revealed
    Eerqing N; Wu HY; Subramanian S; Vincent S; Vollmer F
    Nanoscale Horiz; 2023 Jun; 8(7):935-947. PubMed ID: 37199345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod.
    Zijlstra P; Paulo PM; Orrit M
    Nat Nanotechnol; 2012 Apr; 7(6):379-82. PubMed ID: 22504707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Point-of-Care Biosensing of Urinary Tract Infections Employing Optoplasmonic Surfaces Embedded with Metal Nanotwins.
    Basak M; Mitra S; Gogoi M; Sinha S; Nemade HB; Bandyopadhyay D
    ACS Appl Bio Mater; 2022 Nov; 5(11):5321-5332. PubMed ID: 36222059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C; Jiang X; Yang Y; Zhang J; Larson S; Zhao Y; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31242-31254. PubMed ID: 32608960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule fluorescence enhancement of a near-infrared dye by gold nanorods using DNA transient binding.
    Zhang W; Caldarola M; Lu X; Pradhan B; Orrit M
    Phys Chem Chem Phys; 2018 Aug; 20(31):20468-20475. PubMed ID: 30043814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform.
    Baaske MD; Foreman MR; Vollmer F
    Nat Nanotechnol; 2014 Nov; 9(11):933-9. PubMed ID: 25173831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA hybridisation kinetics using single-molecule fluorescence imaging.
    Andrews R
    Essays Biochem; 2021 Apr; 65(1):27-36. PubMed ID: 33491734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of formaldehyde in water: a shape-effect on the plasmonic sensing properties of the gold nanoparticles.
    Nengsih S; Umar AA; Salleh MM; Oyama M
    Sensors (Basel); 2012; 12(8):10309-25. PubMed ID: 23112601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified plasmonic and microfluidic setup for DNA monitoring.
    Guerreiro JRL; Ipatov A; Carvalho J; Toldrà A; Prado M
    Mikrochim Acta; 2021 Sep; 188(10):326. PubMed ID: 34494176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor.
    Prabowo BA; Purwidyantri A; Liu B; Lai HC; Liu KC
    Nanotechnology; 2021 Feb; 32(9):095503. PubMed ID: 33232941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approach for plasmonic based DNA sensing: amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures.
    Spadavecchia J; Barras A; Lyskawa J; Woisel P; Laure W; Pradier CM; Boukherroub R; Szunerits S
    Anal Chem; 2013 Mar; 85(6):3288-96. PubMed ID: 23413826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA
    J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-order snapshot spectral imaging of plasmonic nanoparticles.
    Nusz GJ; Marinakos SM; Rangarajan S; Chilkoti A
    Appl Opt; 2011 Jul; 50(21):4198-206. PubMed ID: 21772408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Enhancement of Two-Photon Excited Luminescence of Gold Nanoclusters.
    Pniakowska A; Olesiak-Banska J
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic response of DNA-assembled gold nanorods: effect of DNA linker length, temperature and linker/nanoparticles ratio.
    Vial S; Nykypanchuk D; Deepak FL; Prado M; Gang O
    J Colloid Interface Sci; 2014 Nov; 433():34-42. PubMed ID: 25112910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.