These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37199622)

  • 1. 16S rRNA-Based Microbiota Profiling Assists Conventional Culture Analysis of Airway Samples from Pediatric Cystic Fibrosis Patients.
    Kristensen M; de Koff EM; Chu ML; Groendijk S; Tramper-Stranders GA; de Winter-de Groot KM; Janssens HM; Tiddens HA; van Westreenen M; Sanders EAM; Arets BHGM; van der Ent CK; Prevaes SMPJ; Bogaert D
    Microbiol Spectr; 2023 Jun; 11(3):e0405722. PubMed ID: 37199622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the Nasopharyngeal Microbiota in Infants with Cystic Fibrosis.
    Prevaes SM; de Winter-de Groot KM; Janssens HM; de Steenhuijsen Piters WA; Tramper-Stranders GA; Wyllie AL; Hasrat R; Tiddens HA; van Westreenen M; van der Ent CK; Sanders EA; Bogaert D
    Am J Respir Crit Care Med; 2016 Mar; 193(5):504-15. PubMed ID: 26492486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concordance between upper and lower airway microbiota in infants with cystic fibrosis.
    Prevaes SM; de Steenhuijsen Piters WA; de Winter-de Groot KM; Janssens HM; Tramper-Stranders GA; Chu ML; Tiddens HA; van Westreenen M; van der Ent CK; Sanders EA; Bogaert D
    Eur Respir J; 2017 Mar; 49(3):. PubMed ID: 28356374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal and Bacterial Diversity of Airway Microbiota in Adults with Cystic Fibrosis: Concordance Between Conventional Methods and Ultra-Deep Sequencing, and Their Practical use in the Clinical Laboratory.
    Botterel F; Angebault C; Cabaret O; Stressmann FA; Costa JM; Wallet F; Wallaert B; Bruce K; Delhaes L
    Mycopathologia; 2018 Feb; 183(1):171-183. PubMed ID: 28766039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolic footprint of the airway bacterial community in cystic fibrosis.
    Narayanamurthy V; Sweetnam JM; Denner DR; Chen LW; Naureckas ET; Laxman B; White SR
    Microbiome; 2017 Jun; 5(1):67. PubMed ID: 28666467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Culture-Independent Analysis of Pediatric Bronchoalveolar Lavage Specimens.
    Zachariah P; Ryan C; Nadimpalli S; Coscia G; Kolb M; Smith H; Foca M; Saiman L; Planet PJ
    Ann Am Thorac Soc; 2018 Sep; 15(9):1047-1056. PubMed ID: 29877714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.
    Hahn A; Sanyal A; Perez GF; Colberg-Poley AM; Campos J; Rose MC; Pérez-Losada M
    J Microbiol Methods; 2016 Nov; 130():95-99. PubMed ID: 27609714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture enriched molecular profiling of the cystic fibrosis airway microbiome.
    Sibley CD; Grinwis ME; Field TR; Eshaghurshan CS; Faria MM; Dowd SE; Parkins MD; Rabin HR; Surette MG
    PLoS One; 2011; 6(7):e22702. PubMed ID: 21829484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence of bacterial communities in the lower airways of CF patients in early childhood.
    O'Connor JB; Mottlowitz MM; Wagner BD; Boyne KL; Stevens MJ; Robertson CE; Harris JK; Laguna TA
    PLoS One; 2021; 16(10):e0257838. PubMed ID: 34613995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low Diversity and Instability of the Sinus Microbiota over Time in Adults with Cystic Fibrosis.
    Armbruster CR; Li K; Kiedrowski MR; Zemke AC; Melvin JA; Moore J; Atteih S; Fitch AC; DuPont M; Manko CD; Weaver ML; Gaston JR; Alcorn JF; Morris A; Methé BA; Lee SE; Bomberger JM
    Microbiol Spectr; 2022 Oct; 10(5):e0125122. PubMed ID: 36094193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Evaluation of Metaproteomics and 16S rRNA Amplicon Sequencing Techniques for Study of Gut Microbiota Establishment in Infants with Cystic Fibrosis.
    Saralegui C; García-Durán C; Romeu E; Hernáez-Sánchez ML; Maruri A; Bastón-Paz N; Lamas A; Vicente S; Pérez-Ruiz E; Delgado I; Luna-Paredes C; Caballero JD; Zamora J; Monteoliva L; Gil C; Del Campo R
    Microbiol Spectr; 2022 Dec; 10(6):e0146622. PubMed ID: 36255300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.
    Salipante SJ; Sengupta DJ; Rosenthal C; Costa G; Spangler J; Sims EH; Jacobs MA; Miller SI; Hoogestraat DR; Cookson BT; McCoy C; Matsen FA; Shendure J; Lee CC; Harkins TT; Hoffman NG
    PLoS One; 2013; 8(5):e65226. PubMed ID: 23734239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measures of Cystic Fibrosis Airway Microbiota during Periods of Clinical Stability.
    Caverly LJ; Lu J; Carmody LA; Kalikin LM; Shedden K; Opron K; Azar M; Cahalan S; Foster B; VanDevanter DR; Simon RH; LiPuma JJ
    Ann Am Thorac Soc; 2019 Dec; 16(12):1534-1542. PubMed ID: 31415187
    [No Abstract]   [Full Text] [Related]  

  • 14. Microbial diversity within the airway microbiome in chronic pediatric lung diseases.
    Hahn A; Warnken S; Pérez-Losada M; Freishtat RJ; Crandall KA
    Infect Genet Evol; 2018 Sep; 63():316-325. PubMed ID: 29225146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma.
    McCauley K; Durack J; Valladares R; Fadrosh DW; Lin DL; Calatroni A; LeBeau PK; Tran HT; Fujimura KE; LaMere B; Merana G; Lynch K; Cohen RT; Pongracic J; Khurana Hershey GK; Kercsmar CM; Gill M; Liu AH; Kim H; Kattan M; Teach SJ; Togias A; Boushey HA; Gern JE; Jackson DJ; Lynch SV;
    J Allergy Clin Immunol; 2019 Nov; 144(5):1187-1197. PubMed ID: 31201890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation.
    Twomey KB; Alston M; An SQ; O'Connell OJ; McCarthy Y; Swarbreck D; Febrer M; Dow JM; Plant BJ; Ryan RP
    PLoS One; 2013; 8(12):e82432. PubMed ID: 24358183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nasal microbiota in infants with cystic fibrosis in the first year of life: a prospective cohort study.
    Mika M; Korten I; Qi W; Regamey N; Frey U; Casaulta C; Latzin P; Hilty M;
    Lancet Respir Med; 2016 Aug; 4(8):627-635. PubMed ID: 27180018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three clinically distinct chronic pediatric airway infections share a common core microbiota.
    van der Gast CJ; Cuthbertson L; Rogers GB; Pope C; Marsh RL; Redding GJ; Bruce KD; Chang AB; Hoffman LR
    Ann Am Thorac Soc; 2014 Sep; 11(7):1039-48. PubMed ID: 24597615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF) and Their Association with Lower Airways Infections.
    Heirali A; McKeon S; Purighalla S; Storey DG; Rossi L; Costilhes G; Drews SJ; Rabin HR; Surette MG; Parkins MD
    PLoS One; 2016; 11(2):e0148534. PubMed ID: 26859493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal Associations of the Cystic Fibrosis Airway Microbiome and Volatile Metabolites: A Case Study.
    Hahn A; Whiteson K; Davis TJ; Phan J; Sami I; Koumbourlis AC; Freishtat RJ; Crandall KA; Bean HD
    Front Cell Infect Microbiol; 2020; 10():174. PubMed ID: 32411616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.