These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37199692)
1. Temperature-Triggered Adhesive Bioelectric Electrodes with Long-Term Dynamic Stability and Reusability. Lai H; Liu Y; Cheng Y; Shi L; Wang R; Sun J Adv Sci (Weinh); 2023 Aug; 10(22):e2300793. PubMed ID: 37199692 [TBL] [Abstract][Full Text] [Related]
2. High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning. Zou X; Xue J; Li X; Chan CPY; Li Z; Li P; Yang Z; Lai KWC ACS Appl Mater Interfaces; 2023 Apr; 15(15):19374-19383. PubMed ID: 37036803 [TBL] [Abstract][Full Text] [Related]
3. Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. Li Q; Chen G; Cui Y; Ji S; Liu Z; Wan C; Liu Y; Lu Y; Wang C; Zhang N; Cheng Y; Zhang KQ; Chen X ACS Nano; 2021 Jun; 15(6):9955-9966. PubMed ID: 34110782 [TBL] [Abstract][Full Text] [Related]
4. Flexible Dry Electrode Based on a Wrinkled Surface That Uses Carbon Nanotube/Polymer Composites for Recording Electroencephalograms. Oh J; Nam KW; Kim WJ; Kang BH; Park SH Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591516 [TBL] [Abstract][Full Text] [Related]
5. Stretchable and Self-Adhesive PEDOT:PSS Blend with High Sweat Tolerance as Conformal Biopotential Dry Electrodes. Cao J; Yang X; Rao J; Mitriashkin A; Fan X; Chen R; Cheng H; Wang X; Goh J; Leo HL; Ouyang J ACS Appl Mater Interfaces; 2022 Aug; 14(34):39159-39171. PubMed ID: 35973944 [TBL] [Abstract][Full Text] [Related]
6. Wet-Adhesive Multifunctional Hydrogel with Anti-swelling and a Skin-Seamless Interface for Underwater Electrophysiological Monitoring and Communication. Huang H; Shen J; Wan S; Han L; Dou G; Sun L ACS Appl Mater Interfaces; 2023 Mar; 15(9):11549-11562. PubMed ID: 36847327 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Silver Nanowire/Polydimethylsiloxane Dry Electrodes by a Vacuum Filtration Method for Electrophysiological Signal Monitoring. Kisannagar RR; Jha P; Navalkar A; Maji SK; Gupta D ACS Omega; 2020 May; 5(18):10260-10265. PubMed ID: 32426582 [TBL] [Abstract][Full Text] [Related]
8. Cryo-Transferred Ultrathin and Stretchable Epidermal Electrodes. Fang Y; Li Y; Wang X; Zhou Z; Zhang K; Zhou J; Hu B Small; 2020 Jul; 16(28):e2000450. PubMed ID: 32529803 [TBL] [Abstract][Full Text] [Related]
9. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621 [TBL] [Abstract][Full Text] [Related]
10. Biological Hair-Inspired AgNWs@Au-Embedded Nafion Electrodes with High Stability for Self-Powered Ionic Flexible Sensors. Zhao C; Wang Y; Tang G; Ji Y; Zhao X; Mei D; Ru J; Chang L; Li B; Zhu D; Li L ACS Appl Mater Interfaces; 2022 Oct; 14(40):46023-46031. PubMed ID: 36178786 [TBL] [Abstract][Full Text] [Related]
11. Breathable, Self-Adhesive Dry Electrodes for Stable Electrophysiological Signal Monitoring During Exercise. Liu Y; Cheng Y; Shi L; Wang R; Sun J ACS Appl Mater Interfaces; 2022 Mar; 14(10):12812-12823. PubMed ID: 35234456 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale Strategies for Enhancing the Performance of Adhesive Dry Electrodes for the Skin. Yang S; Jiang X ACS Nano; 2024 Oct; 18(40):27107-27125. PubMed ID: 39327802 [TBL] [Abstract][Full Text] [Related]
13. Ordered Nanopillar Arrays of Low Dynamic Noise Dry Bioelectrodes for Electrocardiogram Surface Monitoring. Niu X; Gao X; Wang T; Wang W; Liu H ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830904 [TBL] [Abstract][Full Text] [Related]
14. Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. Zhou W; Yao S; Wang H; Du Q; Ma Y; Zhu Y ACS Nano; 2020 May; 14(5):5798-5805. PubMed ID: 32347707 [TBL] [Abstract][Full Text] [Related]
15. Pure Conducting Polymer Hydrogels Increase Signal-to-Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance. Roubert Martinez S; Le Floch P; Liu J; Howe RD Adv Healthc Mater; 2023 Jul; 12(17):e2202661. PubMed ID: 36867669 [TBL] [Abstract][Full Text] [Related]
16. A Nanoclay-Enhanced Hydrogel for Self-Adhesive Wearable Electrophysiology Electrodes with High Sensitivity and Stability. Wang F; Yang L; Sun Y; Cai Y; Xu X; Liu Z; Liu Q; Zhao H; Ma C; Liu J Gels; 2023 Apr; 9(4):. PubMed ID: 37102935 [TBL] [Abstract][Full Text] [Related]
17. A Lamellibranchia-inspired epidermal electrode for electrophysiology. Ye G; Qiu J; Fang X; Yu T; Xie Y; Zhao Y; Yan D; He C; Liu N Mater Horiz; 2021 Mar; 8(3):1047-1057. PubMed ID: 34821335 [TBL] [Abstract][Full Text] [Related]
18. All-Nanofiber-Based Janus Epidermal Electrode with Directional Sweat Permeability for Artifact-Free Biopotential Monitoring. Yang X; Wang S; Liu M; Li L; Zhao Y; Wang Y; Bai Y; Lu Q; Xiong Z; Feng S; Zhang T Small; 2022 Mar; 18(12):e2106477. PubMed ID: 35092161 [TBL] [Abstract][Full Text] [Related]
19. A Morphable Ionic Electrode Based on Thermogel for Non-Invasive Hairy Plant Electrophysiology. Luo Y; Li W; Lin Q; Zhang F; He K; Yang D; Loh XJ; Chen X Adv Mater; 2021 Apr; 33(14):e2007848. PubMed ID: 33660373 [TBL] [Abstract][Full Text] [Related]
20. Body Temperature Enhanced Adhesive, Antibacterial, and Recyclable Ionic Hydrogel for Epidermal Electrophysiological Monitoring. Liu Y; Wang C; Xue J; Huang G; Zheng S; Zhao K; Huang J; Wang Y; Zhang Y; Yin T; Li Z Adv Healthc Mater; 2022 Aug; 11(15):e2200653. PubMed ID: 35668708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]