BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 37200132)

  • 1. BCI Control of a Robotic Arm Based on SSVEP With Moving Stimuli for Reach and Grasp Tasks.
    Ai J; Meng J; Mai X; Zhu X
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3818-3829. PubMed ID: 37200132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistance Device Based on SSVEP-BCI Online to Control a 6-DOF Robotic Arm.
    Albán-Escobar M; Navarrete-Arroyo P; De la Cruz-Guevara DR; Tobar-Quevedo J
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A SSVEP-Based Brain-Computer Interface With Low-Pixel Density of Stimuli.
    Meng J; Liu H; Wu Q; Zhou H; Shi W; Meng L; Xu M; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4439-4448. PubMed ID: 37906489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Hybrid Brain-Computer Interface Combining the Illusion-Induced VEP and SSVEP.
    Li R; Zhao X; Wang Z; Xu G; Hu H; Zhou T; Xu T
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4760-4772. PubMed ID: 38015667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An open dataset for human SSVEPs in the frequency range of 1-60 Hz.
    Gu M; Pei W; Gao X; Wang Y
    Sci Data; 2024 Feb; 11(1):196. PubMed ID: 38351064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Visual Stimulation Paradigms for User-Friendly SSVEP-Based BCIs.
    Gu M; Pei W; Gao X; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1090-1099. PubMed ID: 38437148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an optimization of stimulus parameters for brain-computer interfaces based on steady state visual evoked potentials.
    Duszyk A; Bierzyńska M; Radzikowska Z; Milanowski P; Kuś R; Suffczyński P; Michalska M; Łabęcki M; Zwoliński P; Durka P
    PLoS One; 2014; 9(11):e112099. PubMed ID: 25398134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Brain-Computer Interface Controlled Soft Robotic Glove for Stroke Rehabilitation.
    Zhang R; Feng S; Hu N; Low S; Li M; Chen X; Cui H
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4194-4203. PubMed ID: 38648145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-Car Environment Control Using an SSVEP-Based Brain-Computer Interface with Visual Stimuli Presented on Head-Up Display: Performance Comparison with a Button-Press Interface.
    Park S; Kim M; Nam H; Kwon J; Im CH
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-Computer Interface Speller Based on Steady-State Visual Evoked Potential: A Review Focusing on the Stimulus Paradigm and Performance.
    Li M; He D; Li C; Qi S
    Brain Sci; 2021 Apr; 11(4):. PubMed ID: 33916189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel brain-controlled prosthetic hand method integrating AR-SSVEP augmentation, asynchronous control, and machine vision assistance.
    Zhang X; Zhang T; Jiang Y; Zhang W; Lu Z; Wang Y; Tao Q
    Heliyon; 2024 Mar; 10(5):e26521. PubMed ID: 38463871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An EEG-based brain-computer interface for real-time multi-task robotic control.
    An Y; Wong JKW; Ling SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive Shared Control of Robotic Arms Using Simulated Brain-Computer Interface Inputs.
    Kokorin K; Mu J; John SE; Grayden DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience.
    Cabrera Castillos K; Ladouce S; Darmet L; Dehais F
    Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inverted faces as visual stimuli on the performance of the hybrid SSVEP + P300 brain computer interface.
    Kapgate DD
    Brain Res; 2024 Jun; ():149092. PubMed ID: 38897536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Single-Channel and Non-Invasive Wearable Brain-Computer Interface for Industry and Healthcare.
    Arpaia P; Esposito A; Moccaldi N; Parvis M
    J Vis Exp; 2023 Jul; (197):. PubMed ID: 37486136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of the Action Observation-Based Brain-Computer Interface in Stroke Patients and Gaze Metrics Analysis.
    Zhang X; He L; Gao Q; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1370-1379. PubMed ID: 38512735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Muscle Artifact Reduction Methods on Few-channel SSVEPs during Head Movements.
    Namura N; Kanoga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain stimulation with 40 Hz heterochromatic flicker extended beyond red, green, and blue.
    Henney MA; Carstensen M; Thorning-Schmidt M; Kubińska M; Grønberg MG; Nguyen M; Madsen KH; Clemmensen LKH; Petersen PM
    Sci Rep; 2024 Jan; 14(1):2147. PubMed ID: 38273009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback.
    Zeng H; Wang Y; Wu C; Song A; Liu J; Ji P; Xu B; Zhu L; Li H; Wen P
    Front Neurorobot; 2017; 11():60. PubMed ID: 29163123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.