These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37200221)

  • 1. Clinical Impact of Deep Learning Reconstruction in MRI.
    Kiryu S; Akai H; Yasaka K; Tajima T; Kunimatsu A; Yoshioka N; Akahane M; Abe O; Ohtomo K
    Radiographics; 2023 Jun; 43(6):e220133. PubMed ID: 37200221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Deep Learning Image Reconstruction Methods on MRI Throughput.
    Yang A; Finkelstein M; Koo C; Doshi AH
    Radiol Artif Intell; 2024 May; 6(3):e230181. PubMed ID: 38506618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method.
    Uetani H; Nakaura T; Kitajima M; Morita K; Haraoka K; Shinojima N; Tateishi M; Inoue T; Sasao A; Mukasa A; Azuma M; Ikeda O; Yamashita Y; Hirai T
    Eur Radiol; 2022 Jul; 32(7):4527-4536. PubMed ID: 35169896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning-based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations.
    Nagayama Y; Sakabe D; Goto M; Emoto T; Oda S; Nakaura T; Kidoh M; Uetani H; Funama Y; Hirai T
    Radiographics; 2021; 41(7):1936-1953. PubMed ID: 34597178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data.
    Greffier J; Frandon J; Si-Mohamed S; Dabli D; Hamard A; Belaouni A; Akessoul P; Besse F; Guiu B; Beregi JP
    Diagn Interv Imaging; 2022 Jan; 103(1):21-30. PubMed ID: 34493475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN.
    Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H
    Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms.
    Oostveen LJ; Meijer FJA; de Lange F; Smit EJ; Pegge SA; Steens SCA; van Amerongen MJ; Prokop M; Sechopoulos I
    Eur Radiol; 2021 Aug; 31(8):5498-5506. PubMed ID: 33693996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of knee magnetic resonance imaging using a combination of compressed sensing and commercially available deep learning reconstruction: a preliminary study.
    Akai H; Yasaka K; Sugawara H; Tajima T; Kamitani M; Furuta T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S
    BMC Med Imaging; 2023 Jan; 23(1):5. PubMed ID: 36624404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based image restoration algorithm for coronary CT angiography.
    Tatsugami F; Higaki T; Nakamura Y; Yu Z; Zhou J; Lu Y; Fujioka C; Kitagawa T; Kihara Y; Iida M; Awai K
    Eur Radiol; 2019 Oct; 29(10):5322-5329. PubMed ID: 30963270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting.
    Kim M; Kim HS; Kim HJ; Park JE; Park SY; Kim YH; Kim SJ; Lee J; Lebel MR
    Radiology; 2021 Jan; 298(1):114-122. PubMed ID: 33141001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.
    Akagi M; Nakamura Y; Higaki T; Narita K; Honda Y; Zhou J; Yu Z; Akino N; Awai K
    Eur Radiol; 2019 Nov; 29(11):6163-6171. PubMed ID: 30976831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.
    Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR
    Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction.
    Hahn S; Yi J; Lee HJ; Lee Y; Lim YJ; Bang JY; Kim H; Lee J
    AJR Am J Roentgenol; 2022 Mar; 218(3):506-516. PubMed ID: 34523950
    [No Abstract]   [Full Text] [Related]  

  • 20. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study.
    Greffier J; Durand Q; Frandon J; Si-Mohamed S; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Eur Radiol; 2023 Jan; 33(1):699-710. PubMed ID: 35864348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.