These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37200578)

  • 41. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks.
    Zhao R; Liu Q; Zhang H
    Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MATHEMATICAL MODELLING APPROACH OF THE STUDY OF EBOLA VIRUS DISEASE TRANSMISSION DYNAMICS IN A DEVELOPING COUNTRY.
    E MGC; Sunday OI; Ojoma AQ; C CO; C AC; Chukwudi O
    Afr J Infect Dis; 2023; 17(1):10-26. PubMed ID: 36756492
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear Dynamical Analysis and Optimal Control Strategies for a New Rumor Spreading Model with Comprehensive Interventions.
    Li T; Guo Y
    Qual Theory Dyn Syst; 2021; 20(3):84. PubMed ID: 34539295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global stability analysis of SEIR model with holling type II incidence function.
    Safi MA; Garba SM
    Comput Math Methods Med; 2012; 2012():826052. PubMed ID: 23091562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stability analysis and optimal control of a fractional-order model for African swine fever.
    Shi R; Li Y; Wang C
    Virus Res; 2020 Oct; 288():198111. PubMed ID: 32791169
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Delayed transiently chaotic neural networks and their application.
    Chen SS
    Chaos; 2009 Sep; 19(3):033125. PubMed ID: 19792005
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global stability of the endemic equilibrium of a discrete SIR epidemic model.
    Ma X; Zhou Y; Cao H
    Adv Differ Equ; 2013; 2013(1):42. PubMed ID: 32226446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mathematical modeling analysis on the dynamics of university students animosity towards mathematics with optimal control theory.
    Teklu SW; Terefe BB
    Sci Rep; 2022 Jul; 12(1):11578. PubMed ID: 35803995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamical analysis of SEIS model with nonlinear innate immunity and saturated treatment.
    Jain S; Kumar S
    Eur Phys J Plus; 2021; 136(9):952. PubMed ID: 34549013
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global stability of a class of futile cycles.
    Rao S
    J Math Biol; 2017 Feb; 74(3):709-726. PubMed ID: 27356890
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics analysis of epidemic and information spreading in overlay networks.
    Liu G; Liu Z; Jin Z
    J Theor Biol; 2018 May; 444():28-37. PubMed ID: 29452174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Global dynamics of an epidemiological model with age of infection and disease relapse.
    Xu R
    J Biol Dyn; 2018 Dec; 12(1):118-145. PubMed ID: 29198167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of delay on HIV-1 dynamics of fighting a virus with another virus.
    Tian Y; Bai Y; Yu P
    Math Biosci Eng; 2014 Oct; 11(5):1181-98. PubMed ID: 25347812
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sveir epidemiological model with varying infectivity and distributed delays.
    Wang J; Huang G; Takeuchi Y; Liu S
    Math Biosci Eng; 2011 Jul; 8(3):875-88. PubMed ID: 21675816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global stability analysis for a generalized delayed SIR model with vaccination and treatment.
    Elazzouzi A; Lamrani Alaoui A; Tilioua M; Tridane A
    Adv Differ Equ; 2019; 2019(1):532. PubMed ID: 32226453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays.
    Song ZG; Xu J
    Cogn Neurodyn; 2013 Dec; 7(6):505-21. PubMed ID: 24427223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion.
    Liu P; Li HX
    Math Biosci Eng; 2020 Oct; 17(6):7248-7273. PubMed ID: 33378896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Backward bifurcation and control in transmission dynamics of arboviral diseases.
    Abboubakar H; Claude Kamgang J; Tieudjo D
    Math Biosci; 2016 Aug; 278():100-29. PubMed ID: 27321192
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complex Dynamics of an SIR Epidemic Model with Saturated Incidence Rate and Treatment.
    Jana S; Nandi SK; Kar TK
    Acta Biotheor; 2016 Mar; 64(1):65-84. PubMed ID: 26566620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stability and bifurcations in an epidemic model with varying immunity period.
    Blyuss KB; Kyrychko YN
    Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.