These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37200608)

  • 41. Gradual compaction of the nascent peptide during cotranslational folding on the ribosome.
    Liutkute M; Maiti M; Samatova E; Enderlein J; Rodnina MV
    Elife; 2020 Oct; 9():. PubMed ID: 33112737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
    Zhao T; Chen YM; Li Y; Wang J; Chen S; Gao N; Qian W
    Genome Biol; 2021 Jan; 22(1):16. PubMed ID: 33402206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding.
    Hoffmann A; Becker AH; Zachmann-Brand B; Deuerling E; Bukau B; Kramer G
    Mol Cell; 2012 Oct; 48(1):63-74. PubMed ID: 22921937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy.
    Cabrita LD; Hsu ST; Launay H; Dobson CM; Christodoulou J
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22239-44. PubMed ID: 20018739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cotranslational folding of spectrin domains via partially structured states.
    Nilsson OB; Nickson AA; Hollins JJ; Wickles S; Steward A; Beckmann R; von Heijne G; Clarke J
    Nat Struct Mol Biol; 2017 Mar; 24(3):221-225. PubMed ID: 28112730
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of the ribosome in protein folding.
    Das D; Das A; Samanta D; Ghosh J; Dasgupta S; Bhattacharya A; Basu A; Sanyal S; Das Gupta C
    Biotechnol J; 2008 Aug; 3(8):999-1009. PubMed ID: 18702035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular simulations of the ribosome and associated translation factors.
    Bock LV; Kolář MH; Grubmüller H
    Curr Opin Struct Biol; 2018 Apr; 49():27-35. PubMed ID: 29202442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Folding at the birth of the nascent chain: coordinating translation with co-translational folding.
    Zhang G; Ignatova Z
    Curr Opin Struct Biol; 2011 Feb; 21(1):25-31. PubMed ID: 21111607
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis.
    Waudby CA; Wlodarski T; Karyadi ME; Cassaignau AME; Chan SHS; Wentink AS; Schmidt-Engler JM; Camilloni C; Vendruscolo M; Cabrita LD; Christodoulou J
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):9744-9749. PubMed ID: 30201720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
    Evans MS; Sander IM; Clark PL
    J Mol Biol; 2008 Nov; 383(3):683-92. PubMed ID: 18674543
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cotranslational protein folding on the ribosome monitored in real time.
    Holtkamp W; Kokic G; Jäger M; Mittelstaet J; Komar AA; Rodnina MV
    Science; 2015 Nov; 350(6264):1104-7. PubMed ID: 26612953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ribosome as a hub for protein quality control.
    Pechmann S; Willmund F; Frydman J
    Mol Cell; 2013 Feb; 49(3):411-21. PubMed ID: 23395271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ribosome-DnaK interactions in relation to protein folding.
    Ghosh J; Basu A; Pal S; Chowdhuri S; Bhattacharya A; Pal D; Chattoraj DK; DasGupta C
    Mol Microbiol; 2003 Jun; 48(6):1679-92. PubMed ID: 12791147
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nature and Regulation of Protein Folding on the Ribosome.
    Waudby CA; Dobson CM; Christodoulou J
    Trends Biochem Sci; 2019 Nov; 44(11):914-926. PubMed ID: 31301980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The various facets of the protein-folding activity of the ribosome.
    Voisset C; Saupe SJ; Blondel M
    Biotechnol J; 2011 Jun; 6(6):668-73. PubMed ID: 21567961
    [TBL] [Abstract][Full Text] [Related]  

  • 56. False start: cotranslational protein ubiquitination and cytosolic protein quality control.
    Comyn SA; Chan GT; Mayor T
    J Proteomics; 2014 Apr; 100():92-101. PubMed ID: 23954725
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cotranslational folding of proteins.
    Kolb VA; Makeyev EV; Kommer A; Spirin AS
    Biochem Cell Biol; 1995; 73(11-12):1217-20. PubMed ID: 8722039
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes.
    del Alamo M; Hogan DJ; Pechmann S; Albanese V; Brown PO; Frydman J
    PLoS Biol; 2011 Jul; 9(7):e1001100. PubMed ID: 21765803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lattice simulations of cotranslational folding of single domain proteins.
    Wang P; Klimov DK
    Proteins; 2008 Feb; 70(3):925-37. PubMed ID: 17803235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monitoring cotranslational protein folding in mammalian cells at codon resolution.
    Han Y; David A; Liu B; Magadán JG; Bennink JR; Yewdell JW; Qian SB
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12467-72. PubMed ID: 22802618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.