These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 37200617)

  • 21. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices.
    Lu G; Tang R; Nie J; Zhu X
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300661. PubMed ID: 38271638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical Machine Learning for High-Fidelity 3D Printed Biopolymers.
    Bone JM; Childs CM; Menon A; Póczos B; Feinberg AW; LeDuc PR; Washburn NR
    ACS Biomater Sci Eng; 2020 Dec; 6(12):7021-7031. PubMed ID: 33320614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Bioprinting of Food Grade Hydrogel Infused with Living
    Lin N; Taghizadehmakoei A; Polovina L; McLean I; Santana-Martínez JC; Naese C; Moraes C; Hallam SJ; Dahmen J
    ACS Appl Bio Mater; 2024 May; 7(5):2982-2992. PubMed ID: 38587496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues.
    Bian W; Liau B; Badie N; Bursac N
    Nat Protoc; 2009; 4(10):1522-34. PubMed ID: 19798085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemically Coupled Interfacial Adhesion in Multimaterial Printing of Hydrogels and Elastomers.
    Tian K; Suo Z; Vlassak JJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):31002-31009. PubMed ID: 32536152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput 3D bioprinting of corneal stromal equivalents.
    Kutlehria S; Dinh TC; Bagde A; Patel N; Gebeyehu A; Singh M
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2981-2994. PubMed ID: 32386281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fluid-supported 3D hydrogel bioprinting method.
    Beh CW; Yew DS; Chai RJ; Chin SY; Seow Y; Hoon SS
    Biomaterials; 2021 Sep; 276():121034. PubMed ID: 34332372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing restorative materials using a stereolithographic technique: a systematic review.
    Della Bona A; Cantelli V; Britto VT; Collares KF; Stansbury JW
    Dent Mater; 2021 Feb; 37(2):336-350. PubMed ID: 33353734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels.
    Whitely M; Cereceres S; Dhavalikar P; Salhadar K; Wilems T; Smith B; Mikos A; Cosgriff-Hernandez E
    Biomaterials; 2018 Dec; 185():194-204. PubMed ID: 30245387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Photo and Thermal Two-Stage Curing for High-Performance 3D Printing of Poly(Dimethylsiloxane).
    Ji Z; Jiang D; Zhang X; Guo Y; Wang X
    Macromol Rapid Commun; 2020 May; 41(10):e2000064. PubMed ID: 32307760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.
    Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y
    Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multilayer microfluidic poly(ethylene glycol) diacrylate hydrogels.
    Cuchiara MP; West JL
    Methods Mol Biol; 2013; 949():387-401. PubMed ID: 23329455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic scaffolds with three-dimensional undulated microtopographies.
    Yu JZ; Korkmaz E; Berg MI; LeDuc PR; Ozdoganlar OB
    Biomaterials; 2017 Jun; 128():109-120. PubMed ID: 28325683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printing of PDMS Improves Its Mechanical and Cell Adhesion Properties.
    Ozbolat V; Dey M; Ayan B; Povilianskas A; Demirel MC; Ozbolat IT
    ACS Biomater Sci Eng; 2018 Feb; 4(2):682-693. PubMed ID: 33418756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.