These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37200691)
41. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. Akar S; Lorestani B; Sobhanardakani S; Cheraghi M; Moradi O Environ Monit Assess; 2019 May; 191(6):373. PubMed ID: 31102030 [TBL] [Abstract][Full Text] [Related]
42. Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies. Zhang X; Fu W; Yin Y; Chen Z; Qiu R; Simonnot MO; Wang X Bioresour Technol; 2018 Nov; 268():149-157. PubMed ID: 30077171 [TBL] [Abstract][Full Text] [Related]
43. Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media. Ekanayake A; Rajapaksha AU; Selvasembian R; Vithanage M Environ Res; 2022 Aug; 211():113073. PubMed ID: 35283075 [TBL] [Abstract][Full Text] [Related]
44. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Cherdchoo W; Nithettham S; Charoenpanich J Chemosphere; 2019 Apr; 221():758-767. PubMed ID: 30684773 [TBL] [Abstract][Full Text] [Related]
45. Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Ai Z; Cheng Y; Zhang L; Qiu J Environ Sci Technol; 2008 Sep; 42(18):6955-60. PubMed ID: 18853815 [TBL] [Abstract][Full Text] [Related]
46. Removal performance and mechanism of poly(N Liu L; Yang Z; Zhao L; Liu J; Liu X; Xue J; Tang A Environ Technol; 2020 Aug; 41(19):2450-2463. PubMed ID: 30624161 [TBL] [Abstract][Full Text] [Related]
47. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Hu J; Lo IM; Chen G Langmuir; 2005 Nov; 21(24):11173-9. PubMed ID: 16285787 [TBL] [Abstract][Full Text] [Related]
48. Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents. Liu SS; Chen YZ; De Zhang L; Hua GM; Xu W; Li N; Zhang Y J Hazard Mater; 2011 Jun; 190(1-3):723-8. PubMed ID: 21514991 [TBL] [Abstract][Full Text] [Related]
49. Biomaterials cross-linked graphene oxide composite aerogel with a macro-nanoporous network structure for efficient Cr (VI) removal. Li L; Wei Z; Liu X; Yang Y; Deng C; Yu Z; Guo Z; Shi J; Zhu C; Guo W; Sun Z Int J Biol Macromol; 2020 Aug; 156():1337-1346. PubMed ID: 31760030 [TBL] [Abstract][Full Text] [Related]
50. Removal of hexavalent chromium ions by core-shell sand/Mg-layer double hydroxides (LDHs) in constructed rapid infiltration system. Gao C; Zhang X; Yuan Y; Lei Y; Gao J; Zhao S; He C; Deng L Ecotoxicol Environ Saf; 2018 Dec; 166():285-293. PubMed ID: 30273852 [TBL] [Abstract][Full Text] [Related]
51. Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks. Zaboon S; Abid HR; Yao Z; Gubner R; Wang S; Barifcani A J Colloid Interface Sci; 2018 Aug; 523():75-85. PubMed ID: 29609126 [TBL] [Abstract][Full Text] [Related]
52. Phenylthiosemicarbazide-functionalized UiO-66-NH Tang J; Chen Y; Zhao M; Wang S; Zhang L J Hazard Mater; 2021 Jul; 413():125278. PubMed ID: 33609864 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of a novel illite@carbon nanocomposite adsorbent for removal of Cr(VI) from wastewater. Wang G; Wang S; Sun W; Sun Z; Zheng S J Environ Sci (China); 2017 Jul; 57():62-71. PubMed ID: 28647266 [TBL] [Abstract][Full Text] [Related]
54. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Ahmadi A; Foroutan R; Esmaeili H; Tamjidi S Environ Sci Pollut Res Int; 2020 Apr; 27(12):14044-14057. PubMed ID: 32036528 [TBL] [Abstract][Full Text] [Related]
55. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. Chen S; Yue Q; Gao B; Xu X J Colloid Interface Sci; 2010 Sep; 349(1):256-64. PubMed ID: 20576272 [TBL] [Abstract][Full Text] [Related]
56. Iron modified chitosan/coconut shell activated carbon composite beads for Cr(VI) removal from aqueous solution. Liu Y; Shan H; Pang Y; Zhan H; Zeng C Int J Biol Macromol; 2023 Jan; 224():156-169. PubMed ID: 36265535 [TBL] [Abstract][Full Text] [Related]
57. Removal of Hg Ruan W; Wu H; Qi Y; Yang H Environ Sci Pollut Res Int; 2023 Feb; 30(6):15464-15479. PubMed ID: 36169833 [TBL] [Abstract][Full Text] [Related]
58. Adsorption of Cr(VI) from aqueous solutions using novel activated carbon spheres derived from glucose and sodium dodecylbenzene sulfonate. Xu H; Liu Y; Liang H; Gao C; Qin J; You L; Wang R; Li J; Yang S Sci Total Environ; 2021 Mar; 759():143457. PubMed ID: 33234269 [TBL] [Abstract][Full Text] [Related]
59. An efficient Egeria najas-derived biochar supported nZVI composite for Cr(VI) removal: Characterization and mechanism investigation based on visual MINTEQ model. Yi Y; Wang X; Ma J; Ning P Environ Res; 2020 Oct; 189():109912. PubMed ID: 32980006 [TBL] [Abstract][Full Text] [Related]
60. Efficient adsorption and reduction of Cr(VI) from aqueous solution by Santa Barbara Amorphous-15 (SBA-15) supported Fe/Ni bimetallic nanoparticles. Xing X; Ren X; Alharbi NS; Chen C J Colloid Interface Sci; 2023 Jan; 629(Pt A):744-754. PubMed ID: 36099842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]