These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37201309)

  • 21. Human-robot coupling dynamic modeling and analysis for upper limb rehabilitation robots.
    Xie Q; Meng Q; Dai Y; Zeng Q; Fan Y; Yu H
    Technol Health Care; 2021; 29(4):709-723. PubMed ID: 33386832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unknown Object Detection Using a One-Class Support Vector Machine for a Cloud-Robot System.
    Kabir R; Watanobe Y; Islam MR; Naruse K; Rahman MM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal information bottleneck for deep reinforcement learning with multiple sensors.
    You B; Liu H
    Neural Netw; 2024 Aug; 176():106347. PubMed ID: 38688069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.
    Jiang Y; Song L; Zhang J; Song Y; Yan M
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recognition of Grasping Patterns Using Deep Learning for Human-Robot Collaboration.
    Amaral P; Silva F; Santos V
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion.
    Jiang Y; Wang Y; Miao Z; Na J; Zhao Z; Yang C
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1010-1021. PubMed ID: 33361000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EnANNDeep: An Ensemble-based lncRNA-protein Interaction Prediction Framework with Adaptive k-Nearest Neighbor Classifier and Deep Models.
    Peng L; Tan J; Tian X; Zhou L
    Interdiscip Sci; 2022 Mar; 14(1):209-232. PubMed ID: 35006529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Q-network for social robotics using emotional social signals.
    Belo JPR; Azevedo H; Ramos JJG; Romero RAF
    Front Robot AI; 2022; 9():880547. PubMed ID: 36226257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control.
    Chang CL; Chen ST; Lin PY; Chang CY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal emotional state recognition using sequence-dependent deep hierarchical features.
    Barros P; Jirak D; Weber C; Wermter S
    Neural Netw; 2015 Dec; 72():140-51. PubMed ID: 26548943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating Ensemble Learning Methods for Multi-Modal Emotion Recognition Using Sensor Data Fusion.
    Younis EMG; Zaki SM; Kanjo E; Houssein EH
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reinforcement Learning Approaches in Social Robotics.
    Akalin N; Loutfi A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emergence of integrated behaviors through direct optimization for homeostasis.
    Yoshida N; Daikoku T; Nagai Y; Kuniyoshi Y
    Neural Netw; 2024 Sep; 177():106379. PubMed ID: 38762941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic gesture recognition based on 2D convolutional neural network and feature fusion.
    Yu J; Qin M; Zhou S
    Sci Rep; 2022 Mar; 12(1):4345. PubMed ID: 35288612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of deep learning-based methods in multimodal anomaly detection: A case study in human-robot collaboration.
    Yang L; Yan W; Wu H
    Sci Prog; 2021; 104(2):368504211021192. PubMed ID: 34102926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.