These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3720137)

  • 1. Biomechanical analysis and simulation of scoliosis surgical correction.
    Viviani GR; Ghista DN; Lozada PJ; Subbaraj K; Barnes G
    Clin Orthop Relat Res; 1986 Jul; (208):40-7. PubMed ID: 3720137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical basis of optimal scoliosis surgical correction.
    Ghista DN; Viviani GR; Subbaraj K; Lozada PJ; Srinivasan TM; Barnes G
    J Biomech; 1988; 21(2):77-88. PubMed ID: 3350831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical simulations of scoliotic spinal deformity and correction.
    Noone G; Mazumdar J; Kothiyal KP; Ghista DN; Subbaraj K; Viviani GR
    Australas Phys Eng Sci Med; 1993 Jun; 16(2):63-74. PubMed ID: 8357305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presurgical finite element simulation of scoliosis correction.
    Subbaraj K; Ghista DN; Viviani GR
    J Biomed Eng; 1989 Jan; 11(1):9-18. PubMed ID: 2927103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-specific finite element model of the spine and spinal cord to assess the neurological impact of scoliosis correction: preliminary application on two cases with and without intraoperative neurological complications.
    Henao J; Aubin CÉ; Labelle H; Arnoux PJ
    Comput Methods Biomech Biomed Engin; 2016; 19(8):901-10. PubMed ID: 26324393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model.
    Lafon Y; Steib JP; Skalli W
    Spine (Phila Pa 1976); 2010 Feb; 35(4):453-9. PubMed ID: 20110840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D finite element simulation of Cotrel-Dubousset correction.
    Lafage V; Dubousset J; Lavaste F; Skalli W
    Comput Aided Surg; 2004; 9(1-2):17-25. PubMed ID: 15792933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of forces acting on implant rods and degree of scoliosis correction.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2013 Feb; 28(2):122-8. PubMed ID: 23273729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analyses of surgical correction techniques in idiopathic scoliosis: significance of bi-planar characteristics of scoliotic spines.
    Jayaraman G; Zbib HM; Jacobs RR
    J Biomech; 1989; 22(5):427-37. PubMed ID: 2777817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modelling of hooks for use as intra-operative force sensors.
    Duke KK; Fyfe KR; Moreau MJ; Mahood JK; Raso VJ; Hill DL
    Stud Health Technol Inform; 2002; 88():350-5. PubMed ID: 15456060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative force measurements during correction of scoliosis.
    Dunn HK; Daniels AU; McBride GG
    Spine (Phila Pa 1976); 1982; 7(5):448-55. PubMed ID: 7178983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical analysis of corrective forces in spinal instrumentation for scoliosis treatment.
    Wang X; Aubin CE; Labelle H; Parent S; Crandall D
    Spine (Phila Pa 1976); 2012 Nov; 37(24):E1479-87. PubMed ID: 23151872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic positioning of scoliotic patients during spine instrumentation surgery.
    Duke K; Aubin CE; Dansereau J; Koller A; Labelle H
    J Spinal Disord Tech; 2009 May; 22(3):190-6. PubMed ID: 19412021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation for the optimization of instrumentation strategies in adolescent idiopathic scoliosis.
    Majdouline Y; Aubin CE; Sangole A; Labelle H
    Med Biol Eng Comput; 2009 Nov; 47(11):1143-54. PubMed ID: 19669822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanics of scoliosis].
    Nowakowski A
    Chir Narzadow Ruchu Ortop Pol; 2004; 69(5):341-7. PubMed ID: 15751726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation.
    Duke K; Aubin CE; Dansereau J; Labelle H
    Clin Biomech (Bristol, Avon); 2005 Nov; 20(9):923-31. PubMed ID: 16061317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for the identification of in-vivo segmental stiffness properties of the spine.
    Vanderby R; Daniele M; Patwardhan A; Bunch W
    J Biomech Eng; 1986 Nov; 108(4):312-6. PubMed ID: 3795875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of spino-pelvic parameters in adolescent idiopathic scoliosis after spinal instrumentation and fusion: a case study.
    Pasha S; Aubin CE; Labelle H; Parent S; Mac-Thiong JM
    Stud Health Technol Inform; 2012; 176():125-8. PubMed ID: 22744474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element simulation of spinal deformities correction by in situ contouring technique.
    Dumas R; Lafage V; Lafon Y; Steib JP; Mitton D; Skalli W
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):331-7. PubMed ID: 16298855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.