These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37201642)

  • 1. Decoding cerebro-spinal signatures of human behavior: Application to motor sequence learning.
    Kinany N; Khatibi A; Lungu O; Finsterbusch J; Büchel C; Marchand-Pauvert V; Van De Ville D; Vahdat S; Doyon J
    Neuroimage; 2023 Jul; 275():120174. PubMed ID: 37201642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.
    Vahdat S; Lungu O; Cohen-Adad J; Marchand-Pauvert V; Benali H; Doyon J
    PLoS Biol; 2015 Jun; 13(6):e1002186. PubMed ID: 26125597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal Cord fMRI: A New Window into the Central Nervous System.
    Kinany N; Pirondini E; Micera S; Van De Ville D
    Neuroscientist; 2023 Dec; 29(6):715-731. PubMed ID: 35822665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture.
    Kinany N; Pirondini E; Micera S; Van De Ville D
    Neuron; 2020 Nov; 108(3):424-435.e4. PubMed ID: 32910894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-spinal cord interaction in long-term motor sequence learning in human: An fMRI study.
    Khatibi A; Vahdat S; Lungu O; Finsterbusch J; Büchel C; Cohen-Adad J; Marchand-Pauvert V; Doyon J
    Neuroimage; 2022 Jun; 253():119111. PubMed ID: 35331873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards reliable spinal cord fMRI: Assessment of common imaging protocols.
    Kinany N; Pirondini E; Mattera L; Martuzzi R; Micera S; Van De Ville D
    Neuroimage; 2022 Apr; 250():118964. PubMed ID: 35124227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectomic mapping of brain-spinal cord neural networks: Future directions in assessing spinal cord injury at rest.
    Zhang L; Wang L; Xia H; Tan Y; Li C; Fang C
    Neurosci Res; 2022 Mar; 176():9-17. PubMed ID: 34699861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging.
    Landelle C; Lungu O; Vahdat S; Kavounoudias A; Marchand-Pauvert V; De Leener B; Doyon J
    Neuroimage; 2021 Dec; 245():118684. PubMed ID: 34732324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What can the spinal cord teach us about learning and memory?
    Wolpaw JR
    Neuroscientist; 2010 Oct; 16(5):532-49. PubMed ID: 20889964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated technology for evaluation of brain function and neural plasticity.
    Rossini PM; Dal Forno G
    Phys Med Rehabil Clin N Am; 2004 Feb; 15(1):263-306. PubMed ID: 15029909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning brain dynamics for decoding and predicting individual differences.
    Misra J; Surampudi SG; Venkatesh M; Limbachia C; Jaja J; Pessoa L
    PLoS Comput Biol; 2021 Sep; 17(9):e1008943. PubMed ID: 34478442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical, subcortical and spinal neural correlates of slackline training-induced balance performance improvements.
    Giboin LS; Loewe K; Hassa T; Kramer A; Dettmers C; Spiteri S; Gruber M; Schoenfeld MA
    Neuroimage; 2019 Nov; 202():116061. PubMed ID: 31374329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments and future avenues for human corticospinal neuroimaging.
    Kaptan M; Pfyffer D; Konstantopoulos CG; Law CSW; Weber Ii KA; Glover GH; Mackey S
    Front Hum Neurosci; 2024; 18():1339881. PubMed ID: 38332933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cohesive network reconfiguration accompanies extended training.
    Telesford QK; Ashourvan A; Wymbs NF; Grafton ST; Vettel JM; Bassett DS
    Hum Brain Mapp; 2017 Sep; 38(9):4744-4759. PubMed ID: 28646563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning models of cognitive processes constrained by human brain connectomes.
    Zhang Y; Farrugia N; Bellec P
    Med Image Anal; 2022 Aug; 80():102507. PubMed ID: 35738052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition and maintenance of the simplest motor skill: investigation of CNS mechanisms.
    Wolpaw JR
    Med Sci Sports Exerc; 1994 Dec; 26(12):1475-9. PubMed ID: 7869882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning of deep neural network representations for fMRI decoding.
    Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G
    J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.