BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37201838)

  • 1. Bioreduction of hexavalent chromium via Bacillus subtilis SL-44 enhanced by humic acid: An effective strategy for detoxification and immobilization of chromium.
    Li T; He Y; Wang J; Xiang H; Xu X; Li C; Wu Z
    Sci Total Environ; 2023 Aug; 888():164246. PubMed ID: 37201838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of pH, co-existing ions, ionic strength, and temperature on the adsorption and reduction of hexavalent chromium by undissolved humic acid.
    Barnie S; Zhang J; Wang H; Yin H; Chen H
    Chemosphere; 2018 Dec; 212():209-218. PubMed ID: 30144682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid.
    Zhang J; Yin H; Chen L; Liu F; Chen H
    Environ Pollut; 2018 Jun; 237():740-746. PubMed ID: 29126567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speciation of chromium compounds from humic acid-zeolite Y to an ionic liquid during extraction.
    Huang HL; Wei YJ
    Chemosphere; 2018 Mar; 194():390-395. PubMed ID: 29223118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China.
    Zhang J; Yin H; Wang H; Xu L; Samuel B; Liu F; Chen H
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16913-16921. PubMed ID: 29623643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid.
    Chen H; Jin R; Liu G; Tian T; Gu C; Zhou J; Xing D
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):5065-5075. PubMed ID: 30604364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for enhancing Cr(VI)-contaminated soil remediation and safe utilization by microbial-humic acid-vermiculite-alginate immobilized biocomposite.
    Wu M; Wang Q; Wang C; Zeng Q; Li J; Wu H; Wu B; Xu H; Qiu Z
    Ecotoxicol Environ Saf; 2022 Sep; 243():113956. PubMed ID: 35964397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora.
    Tan H; Wang C; Li H; Peng D; Zeng C; Xu H
    Chemosphere; 2020 Mar; 242():125251. PubMed ID: 31896185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the cooperative adsorption behavior of Cr(VI) and humic acid in water by powdered activated carbon.
    Chen Y; Qian Y; Ma J; Mao M; Qian L; An D
    Sci Total Environ; 2022 Apr; 817():153081. PubMed ID: 35038541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron mineral-humic acid complex enhanced Cr(VI) reduction by Shewanella oneidensis MR-1.
    Mohamed A; Yu L; Fang Y; Ashry N; Riahi Y; Uddin I; Dai K; Huang Q
    Chemosphere; 2020 May; 247():125902. PubMed ID: 31978657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and
    Zhang J; Chen L; Yin H; Jin S; Liu F; Chen H
    Environ Pollut; 2017 Jun; 225():86-92. PubMed ID: 28355575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of TOC Concentration of Humic Substances as an Electron Shuttle on Redox Functional Groups Stimulating Microbial Cr(VI) Reduction.
    Zhou Y; Duan J; Jiang J; Yang Z
    Int J Environ Res Public Health; 2022 Feb; 19(5):. PubMed ID: 35270293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium.
    Maurya A; Kumar R; Yadav P; Singh A; Yadav A; Chowdhary P; Raj A
    Bioresour Technol; 2022 May; 352():127109. PubMed ID: 35378281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials.
    Wu M; Li Y; Li J; Wang Y; Xu H; Zhao Y
    J Hazard Mater; 2019 Apr; 368():412-420. PubMed ID: 30703702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cr(VI) adsorption and reduction by humic acid coated on magnetite.
    Jiang W; Cai Q; Xu W; Yang M; Cai Y; Dionysiou DD; O'Shea KE
    Environ Sci Technol; 2014 Jul; 48(14):8078-85. PubMed ID: 24901955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis.
    Hori M; Shozugawa K; Matsuo M
    J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and multi-step kinetic modelling of Cr(VI) adsorption, reduction and complexation by humic acid, humin and kerogen from different sources.
    Barnie S; Zhang J; Obeng PA; Duncan AE; Adenutsi CD; Xu L; Chen H
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38985-39000. PubMed ID: 33743157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the effect of Cr(VI) removal by stimulating indigenous microorganisms using molasses.
    Yang X; Qin X; Xie J; Li X; Xu H; Zhao Y
    Chemosphere; 2022 Dec; 308(Pt 2):136229. PubMed ID: 36041530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the single and combined toxicity of PFOS and Cr(VI) to soil bacteria and the interaction mechanisms.
    Li J; Zheng T; Yuan D; Gao C; Liu C
    Chemosphere; 2020 Jun; 249():126039. PubMed ID: 32062202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.