BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37202401)

  • 1. Developing OCHROdb, a comprehensive quality checked database of open chromatin regions from sequencing data.
    Shooshtari P; Feng S; Nelakuditi V; Asakereh R; Hosseini Naghavi N; Foong J; Brudno M; Cotsapas C
    Sci Rep; 2023 May; 13(1):8106. PubMed ID: 37202401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ENCODE Portal as an Epigenomics Resource.
    Jou J; Gabdank I; Luo Y; Lin K; Sud P; Myers Z; Hilton JA; Kagda MS; Lam B; O'Neill E; Adenekan P; Graham K; Baymuradov UK; R Miyasato S; Strattan JS; Jolanki O; Lee JW; Litton C; Y Tanaka F; Hitz BC; Cherry JM
    Curr Protoc Bioinformatics; 2019 Dec; 68(1):e89. PubMed ID: 31751002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse.
    Mei S; Qin Q; Wu Q; Sun H; Zheng R; Zang C; Zhu M; Wu J; Shi X; Taing L; Liu T; Brown M; Meyer CA; Liu XS
    Nucleic Acids Res; 2017 Jan; 45(D1):D658-D662. PubMed ID: 27789702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EpiCompare: an online tool to define and explore genomic regions with tissue or cell type-specific epigenomic features.
    He Y; Wang T
    Bioinformatics; 2017 Oct; 33(20):3268-3275. PubMed ID: 28605501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at cardiometabolic GWAS loci.
    Perrin HJ; Currin KW; Vadlamudi S; Pandey GK; Ng KK; Wabitsch M; Laakso M; Love MI; Mohlke KL
    PLoS Genet; 2021 Oct; 17(10):e1009865. PubMed ID: 34699533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connecting high-resolution 3D chromatin organization with epigenomics.
    Feng F; Yao Y; Wang XQD; Zhang X; Liu J
    Nat Commun; 2022 Apr; 13(1):2054. PubMed ID: 35440119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative analysis of reference epigenomes in 20 rice varieties.
    Zhao L; Xie L; Zhang Q; Ouyang W; Deng L; Guan P; Ma M; Li Y; Zhang Y; Xiao Q; Zhang J; Li H; Wang S; Man J; Cao Z; Zhang Q; Zhang Q; Li G; Li X
    Nat Commun; 2020 May; 11(1):2658. PubMed ID: 32461553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REPIC: a database for exploring the N
    Liu S; Zhu A; He C; Chen M
    Genome Biol; 2020 Apr; 21(1):100. PubMed ID: 32345346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenomics: Technologies and Applications.
    Wang KC; Chang HY
    Circ Res; 2018 Apr; 122(9):1191-1199. PubMed ID: 29700067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive 100-bp resolution genome-wide epigenomic profiling data for the hg38 human reference genome.
    Li RY; Huang Y; Zhao Z; Qin ZS
    Data Brief; 2023 Feb; 46():108827. PubMed ID: 36582986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PlantCADB: A Comprehensive Plant Chromatin Accessibility Database.
    Ding K; Sun S; Luo Y; Long C; Zhai J; Zhai Y; Wang G
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):311-323. PubMed ID: 36328151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maps of context-dependent putative regulatory regions and genomic signal interactions.
    Diamanti K; Umer HM; Kruczyk M; DÄ…browski MJ; Cavalli M; Wadelius C; Komorowski J
    Nucleic Acids Res; 2016 Nov; 44(19):9110-9120. PubMed ID: 27625394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
    Baek S; Sung MH
    Methods Mol Biol; 2016; 1418():225-40. PubMed ID: 27008018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting cell-type-specific gene expression from regions of open chromatin.
    Natarajan A; Yardimci GG; Sheffield NC; Crawford GE; Ohler U
    Genome Res; 2012 Sep; 22(9):1711-22. PubMed ID: 22955983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative mapping of the dog epigenome: Reference annotation for comparative intertissue and cross-species studies.
    Son KH; Aldonza MBD; Nam AR; Lee KH; Lee JW; Shin KJ; Kang K; Cho JY
    Sci Adv; 2023 Jul; 9(27):eade3399. PubMed ID: 37406108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality assessment and refinement of chromatin accessibility data using a sequence-based predictive model.
    Han SK; Muto Y; Wilson PC; Humphreys BD; Sampson MG; Chakravarti A; Lee D
    Proc Natl Acad Sci U S A; 2022 Dec; 119(51):e2212810119. PubMed ID: 36508674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DBTSS/DBKERO for integrated analysis of transcriptional regulation.
    Suzuki A; Kawano S; Mitsuyama T; Suyama M; Kanai Y; Shirahige K; Sasaki H; Tokunaga K; Tsuchihara K; Sugano S; Nakai K; Suzuki Y
    Nucleic Acids Res; 2018 Jan; 46(D1):D229-D238. PubMed ID: 29126224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Search and comparison of (epi)genomic feature patterns in multiple genome browser tracks.
    Ceol A; Montanari P; Bartolini I; Ceri S; Ciaccia P; Patella M; Masseroli M
    BMC Bioinformatics; 2020 Oct; 21(1):464. PubMed ID: 33076821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.