These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37202484)

  • 1. Scrutinizing joint remote state preparation under decoherence.
    Iyen C; Falaye BJ; Liman MS
    Sci Rep; 2023 May; 13(1):8066. PubMed ID: 37202484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the quantum fisher information in the interaction of a dirac system with a squeezed generalized amplitude damping channel.
    Iyen C; Liman MS; Emem-Obong SJ; Yahya WA; Onate CA; Falaye BJ
    Sci Rep; 2024 Oct; 14(1):24495. PubMed ID: 39424907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Correlation in Squeezed Generalized Amplitude Damping Channels with Memory.
    Jeong Y; Shin H
    Sci Rep; 2019 Mar; 9(1):4035. PubMed ID: 30858429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protecting nonlocal quantum correlations in correlated squeezed generalized amplitude damping channel.
    Wang S; Han XH; Li WC; Qian T; Fan X; Xiao Y; Gu YJ
    Sci Rep; 2022 Nov; 12(1):20481. PubMed ID: 36443637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontraditional Deterministic Remote State Preparation Using a Non-Maximally Entangled Channel without Additional Quantum Resources.
    Xin X; He S; Li Y; Li C
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of multipartite quantum steering for different types of decoherence channels.
    Li WC; Xiao Y; Han XH; Fan X; Hei XB; Gu YJ
    Sci Rep; 2023 Mar; 13(1):3798. PubMed ID: 36882469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating quantum metrology in noisy channels.
    Falaye BJ; Adepoju AG; Aliyu AS; Melchor MM; Liman MS; Oluwadare OJ; González-Ramírez MD; Oyewumi KJ
    Sci Rep; 2017 Nov; 7(1):16622. PubMed ID: 29192163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entanglement Purification and Protection in a Superconducting Quantum Network.
    Yan H; Zhong Y; Chang HS; Bienfait A; Chou MH; Conner CR; Dumur É; Grebel J; Povey RG; Cleland AN
    Phys Rev Lett; 2022 Feb; 128(8):080504. PubMed ID: 35275688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.
    Lim HT; Hong KH; Kim YH
    Sci Rep; 2015 Oct; 5():15384. PubMed ID: 26487083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slowing Quantum Decoherence by Squeezing in Phase Space.
    Le Jeannic H; Cavaillès A; Huang K; Filip R; Laurat J
    Phys Rev Lett; 2018 Feb; 120(7):073603. PubMed ID: 29542961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error rate reduction of single-qubit gates via noise-aware decomposition into native gates.
    Maldonado TJ; Flick J; Krastanov S; Galda A
    Sci Rep; 2022 Apr; 12(1):6379. PubMed ID: 35430608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state.
    Sun YR; Chen XB; Xu G; Yuan KG; Yang YX
    Sci Rep; 2019 Feb; 9(1):2081. PubMed ID: 30765735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Greenberger-Horne-Zeilinger states with squeezing and postselection.
    Alexander B; Bollinger JJ; Uys H
    Phys Rev A (Coll Park); 2020 Jun; 101(6):. PubMed ID: 34796312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin squeezing of 10
    Bao H; Duan J; Jin S; Lu X; Li P; Qu W; Wang M; Novikova I; Mikhailov EE; Zhao KF; Mølmer K; Shen H; Xiao Y
    Nature; 2020 May; 581(7807):159-163. PubMed ID: 32405021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secure quantum remote state preparation of squeezed microwave states.
    Pogorzalek S; Fedorov KG; Xu M; Parra-Rodriguez A; Sanz M; Fischer M; Xie E; Inomata K; Nakamura Y; Solano E; Marx A; Deppe F; Gross R
    Nat Commun; 2019 Jun; 10(1):2604. PubMed ID: 31197157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extractable quantum work from a two-mode Gaussian state in a noisy channel.
    Cuzminschi M; Zubarev A; Isar A
    Sci Rep; 2021 Dec; 11(1):24286. PubMed ID: 34930993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heralded Bell State of Dissipative Qubits Using Classical Light in a Waveguide.
    Zhang XHH; Baranger HU
    Phys Rev Lett; 2019 Apr; 122(14):140502. PubMed ID: 31050491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic delivery of remote entanglement on a quantum network.
    Humphreys PC; Kalb N; Morits JPJ; Schouten RN; Vermeulen RFL; Twitchen DJ; Markham M; Hanson R
    Nature; 2018 Jun; 558(7709):268-273. PubMed ID: 29899475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System.
    Chang HS; Zhong YP; Bienfait A; Chou MH; Conner CR; Dumur É; Grebel J; Peairs GA; Povey RG; Satzinger KJ; Cleland AN
    Phys Rev Lett; 2020 Jun; 124(24):240502. PubMed ID: 32639797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum discord protection from amplitude damping decoherence.
    Yune J; Hong KH; Lim HT; Lee JC; Kwon O; Han SW; Kim YS; Moon S; Kim YH
    Opt Express; 2015 Oct; 23(20):26012-22. PubMed ID: 26480116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.