BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37203249)

  • 21. Computational Insight into Metallated Graphynes as Single Atom Electrocatalysts for Nitrogen Fixation.
    Hu X; Xiong L; Fang WH; Su NQ
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27861-27872. PubMed ID: 35678821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoengineering Metal-Organic Framework-Based Materials for Use in Electrochemical CO
    Zhao Y; Zheng L; Jiang D; Xia W; Xu X; Yamauchi Y; Ge J; Tang J
    Small; 2021 Apr; 17(16):e2006590. PubMed ID: 33739607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single-Atom Catalysts for Sustainable Ammonia Synthesis.
    Long X; Huang F; Yao Z; Li P; Zhong T; Zhao H; Tian S; Shu D; He C
    Small; 2024 Mar; ():e2400551. PubMed ID: 38516940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-Atom and Dual-Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives.
    Chen S; Cui M; Yin Z; Xiong J; Mi L; Li Y
    ChemSusChem; 2021 Jan; 14(1):73-93. PubMed ID: 33089643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable Exfoliation of MOF-Derived Van Der Waals Superstructure into Ultrathin 2D B/N Co-Doped Porous Carbon Nanosheets: A Superior Catalyst for Ambient Ammonia Electrosynthesis.
    Yan L; Zhao Y; Zhang S; Guo E; Han C; Jiang H; Fu Q; Yang L; Niu W; Xing Y; Zheng Q; Zhao X
    Small; 2023 Jun; 19(22):e2300239. PubMed ID: 36855782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-Organic Frameworks (MOFs) and Their Derivatives for Electrocatalytic Carbon Dioxide (CO
    Qu G; Wei K; Pan K; Zhou J
    Chem Asian J; 2023 Jun; 18(12):e202300291. PubMed ID: 37106554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomically Dispersed Iron Metal Site in a Porphyrin-Based Metal-Organic Framework for Photocatalytic Nitrogen Fixation.
    Shang S; Xiong W; Yang C; Johannessen B; Liu R; Hsu HY; Gu Q; Leung MKH; Shang J
    ACS Nano; 2021 Jun; 15(6):9670-9678. PubMed ID: 34024096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach.
    Lee HK; Koh CSL; Lee YH; Liu C; Phang IY; Han X; Tsung CK; Ling XY
    Sci Adv; 2018 Mar; 4(3):eaar3208. PubMed ID: 29536047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A High-Throughput Screening toward Efficient Nitrogen Fixation: Transition Metal Single-Atom Catalysts Anchored on an Emerging π-π Conjugated Graphitic Carbon Nitride (g-C
    Zhang Q; Wang X; Zhang F; Fang C; Liu D; Zhou Q
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11812-11826. PubMed ID: 36808933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flower-like Hollow MoSe
    Yang L; Wang H; Wang X; Luo W; Wu C; Wang CA; Xu C
    Inorg Chem; 2020 Sep; 59(17):12941-12946. PubMed ID: 32820911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anchoring Au(111) on a Bismuth Sulfide Nanorod: Boosting the Artificial Electrocatalytic Nitrogen Reduction Reaction under Ambient Conditions.
    Zhao L; Zhou J; Zhang L; Sun X; Sun X; Yan T; Ren X; Wei Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55838-55843. PubMed ID: 33263999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-Organic-Framework-Based Nanoarrays for Oxygen Evolution Electrocatalysis.
    Liu W; Ni C; Gao M; Zhao X; Zhang W; Li R; Zhou K
    ACS Nano; 2023 Dec; 17(24):24564-24592. PubMed ID: 38048137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications.
    Xue Y; Zhao G; Yang R; Chu F; Chen J; Wang L; Huang X
    Nanoscale; 2021 Feb; 13(7):3911-3936. PubMed ID: 33595021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions.
    Wen J; Zuo L; Sun H; Wu X; Huang T; Liu Z; Wang J; Liu L; Wu Y; Liu X; van Ree T
    Nanoscale Adv; 2021 Sep; 3(19):5525-5541. PubMed ID: 36133266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis.
    Guo Y; Zhao S; Tang X; Yi H
    J Environ Sci (China); 2024 Jul; 141():261-276. PubMed ID: 38408827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of Metal-Organic Frameworks and Their Derivatives in Electrochemical CO
    Li C; Ji Y; Wang Y; Liu C; Chen Z; Tang J; Hong Y; Li X; Zheng T; Jiang Q; Xia C
    Nanomicro Lett; 2023 Apr; 15(1):113. PubMed ID: 37121938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction.
    Patil SB; Wang DY
    Small; 2020 Nov; 16(45):e2002885. PubMed ID: 32945097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms.
    Zhu Z; Duan J; Chen S
    Small; 2024 May; 20(20):e2309119. PubMed ID: 38126651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.