BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37203249)

  • 41. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions.
    Hou J; Yang M; Zhang J
    Nanoscale; 2020 Apr; 12(13):6900-6920. PubMed ID: 32195530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen vacancies engineering in electrocatalysts nitrogen reduction reaction.
    Zhu H; Wang C; He Y; Pu Y; Li P; He L; Huang X; Tang W; Tang H
    Front Chem; 2022; 10():1039738. PubMed ID: 36311423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Salt-Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis.
    Huang H; Li F; Xue Q; Zhang Y; Yin S; Chen Y
    Small; 2019 Dec; 15(51):e1903500. PubMed ID: 31858705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS
    Zhang L; Ji X; Ren X; Ma Y; Shi X; Tian Z; Asiri AM; Chen L; Tang B; Sun X
    Adv Mater; 2018 Jul; 30(28):e1800191. PubMed ID: 29808517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The important role of surface charge on a new mechanism of nitrogen reduction.
    Wu S; Liu H; Qu M; Du A; Fan J; Sun Q
    Phys Chem Chem Phys; 2023 Mar; 25(11):7986-7993. PubMed ID: 36866807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defect Regulating of Few-Layer Antimonene from Acid-Assisted Exfoliation for Enhanced Electrocatalytic Nitrogen Fixation.
    Cao S; Sun Y; Guo S; Guo Z; Feng Y; Chen S; Chen H; Zhang S; Jiang F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40618-40628. PubMed ID: 34416111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations.
    Wang H; Chen BH; Liu DJ
    Adv Mater; 2021 Jun; 33(25):e2008023. PubMed ID: 33984166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal-organic framework derived nanomaterials for electrocatalysis: recent developments for CO
    Singh C; Mukhopadhyay S; Hod I
    Nano Converg; 2021 Jan; 8(1):1. PubMed ID: 33403521
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced Electrocatalysts Based on Metal-Organic Frameworks.
    Zheng F; Zhang Z; Zhang C; Chen W
    ACS Omega; 2020 Feb; 5(6):2495-2502. PubMed ID: 32095674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances and Prospects in Metal-Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production.
    Zhang L; Zhang K; Wang C; Liu Y; Wu X; Peng Z; Cao H; Li B; Jiang J
    Small; 2021 Dec; 17(52):e2102201. PubMed ID: 34396693
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review.
    Lu S; Liu L; Demissie H; An G; Wang D
    Environ Int; 2021 Jan; 146():106273. PubMed ID: 33264734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ammonia Synthesis Using Single-Atom Catalysts Based on Two-Dimensional Organometallic Metal Phthalocyanine Monolayers under Ambient Conditions.
    Huang CX; Li G; Yang LM; Ganz E
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):608-621. PubMed ID: 33372749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent advances in the metal-organic framework-based electrocatalysts for trifunctional electrocatalysis.
    Devi B; Koner RR; Kurungot S
    Dalton Trans; 2022 Sep; 51(36):13573-13590. PubMed ID: 36000481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-Organic Frameworks-Derived Self-Supported Carbon-Based Composites for Electrocatalytic Water Splitting.
    Cong Y; Huang S; Mei Y; Li TT
    Chemistry; 2021 Nov; 27(64):15866-15888. PubMed ID: 34472663
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The novel π-d conjugated TM
    Sun Y; Shi W; Fu YQ; Yu H; Wang Z; Li Z
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):1-12. PubMed ID: 37392494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry.
    Kim M; Yi J; Park SH; Park SS
    Adv Mater; 2023 Jan; 35(4):e2203791. PubMed ID: 35853171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Robust n-n Heterojunction: CuN and BN Boosting for Ambient Electrocatalytic Nitrogen Reduction to Ammonia.
    Liu J; He L; Zhao S; Hu L; Li S; Zhang Z; Du M
    Small; 2023 Oct; 19(42):e2302600. PubMed ID: 37322392
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting.
    Wang CP; Lin YX; Cui L; Zhu J; Bu XH
    Small; 2023 Apr; 19(15):e2207342. PubMed ID: 36605002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.