These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37203282)

  • 1. Reduced left ventricular dynamics modeling based on a cylindrical assumption.
    Genet M; Diaz J; Chapelle D; Moireau P
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3711. PubMed ID: 37203282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite state machine implementation for left ventricle modeling and control.
    King JM; Bergeron CA; Taylor CE
    Biomed Eng Online; 2019 Jan; 18(1):10. PubMed ID: 30700298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of left ventricular mechanics to myofiber architecture: A finite element study.
    Nikou A; Gorman RC; Wenk JF
    Proc Inst Mech Eng H; 2016 Jun; 230(6):594-8. PubMed ID: 26975892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis.
    Scardulla F; Agnese V; Romano G; Di Gesaro G; Sciacca S; Bellavia D; Clemenza F; Pilato M; Pasta S
    Cardiovasc Eng Technol; 2018 Sep; 9(3):427-437. PubMed ID: 29700783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperelastic description of elastomechanic properties of the heart: a new material law and its application.
    Häfner J; Sachse FB; Sansour C; Seemann G; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():770-3. PubMed ID: 12465299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model order reduction for left ventricular mechanics via congruency training.
    Di Achille P; Parikh J; Khamzin S; Solovyova O; Kozloski J; Gurev V
    PLoS One; 2020; 15(1):e0219876. PubMed ID: 31905197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart.
    Gurev V; Lee T; Constantino J; Arevalo H; Trayanova NA
    Biomech Model Mechanobiol; 2011 Jun; 10(3):295-306. PubMed ID: 20589408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromechanical wavebreak in a model of the human left ventricle.
    Keldermann RH; Nash MP; Gelderblom H; Wang VY; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2010 Jul; 299(1):H134-43. PubMed ID: 20400690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Left-ventricular shape determines intramyocardial mechanical heterogeneity.
    Choi HF; Rademakers FE; Claus P
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2351-61. PubMed ID: 21949116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of left ventricular wall and mitral valve mechanics--a model study.
    Arts T; Reneman RS
    J Biomech; 1989; 22(3):261-71. PubMed ID: 2722896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Left Ventricular Dynamics Using a Low-Order Mathematical Model.
    Moulton MJ; Hong BD; Secomb TW
    Cardiovasc Eng Technol; 2017 Dec; 8(4):480-494. PubMed ID: 28812230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational finite element model of cardiac torsion.
    Bagnoli P; Malagutti N; Gastaldi D; Marcelli E; Lui E; Cercenelli L; Costantino ML; Plicchi G; Fumero R
    Int J Artif Organs; 2011 Jan; 34(1):44-53. PubMed ID: 21298621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-static image-based immersed boundary-finite element model of left ventricle under diastolic loading.
    Gao H; Wang H; Berry C; Luo X; Griffith BE
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1199-222. PubMed ID: 24799090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.