These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37203510)
1. Information Extraction from Medical Texts with BERT Using Human-in-the-Loop Labeling. Šuvalov H; Laur S; Kolde R Stud Health Technol Inform; 2023 May; 302():831-832. PubMed ID: 37203510 [TBL] [Abstract][Full Text] [Related]
2. MLM-based typographical error correction of unstructured medical texts for named entity recognition. Lee EB; Heo GE; Choi CM; Song M BMC Bioinformatics; 2022 Nov; 23(1):486. PubMed ID: 36384464 [TBL] [Abstract][Full Text] [Related]
3. Drug knowledge discovery via multi-task learning and pre-trained models. Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238 [TBL] [Abstract][Full Text] [Related]
4. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
5. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
6. Korean clinical entity recognition from diagnosis text using BERT. Kim YM; Lee TH BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724 [TBL] [Abstract][Full Text] [Related]
7. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation. Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671 [TBL] [Abstract][Full Text] [Related]
8. Does BERT need domain adaptation for clinical negation detection? Lin C; Bethard S; Dligach D; Sadeque F; Savova G; Miller TA J Am Med Inform Assoc; 2020 Apr; 27(4):584-591. PubMed ID: 32044989 [TBL] [Abstract][Full Text] [Related]
9. Programming techniques for improving rule readability for rule-based information extraction natural language processing pipelines of unstructured and semi-structured medical texts. Ladas N; Borchert F; Franz S; Rehberg A; Strauch N; Sommer KK; Marschollek M; Gietzelt M Health Informatics J; 2023; 29(2):14604582231164696. PubMed ID: 37068028 [TBL] [Abstract][Full Text] [Related]
10. Highly accurate classification of chest radiographic reports using a deep learning natural language model pre-trained on 3.8 million text reports. Bressem KK; Adams LC; Gaudin RA; Tröltzsch D; Hamm B; Makowski MR; Schüle CY; Vahldiek JL; Niehues SM Bioinformatics; 2021 Jan; 36(21):5255-5261. PubMed ID: 32702106 [TBL] [Abstract][Full Text] [Related]
11. Rule-Based Natural Language Processing Pipeline to Detect Medication-Related Named Entities: Insights for Transfer Learning. Wong ZSY; Waters N; ; Kuo NI; Liu J Stud Health Technol Inform; 2024 Jan; 310():584-588. PubMed ID: 38269876 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of pre-trained language models for named entity recognition in clinical trial eligibility criteria from multiple corpora. Li J; Wei Q; Ghiasvand O; Chen M; Lobanov V; Weng C; Xu H BMC Med Inform Decis Mak; 2022 Sep; 22(Suppl 3):235. PubMed ID: 36068551 [TBL] [Abstract][Full Text] [Related]
13. Application of Entity-BERT model based on neuroscience and brain-like cognition in electronic medical record entity recognition. Lu W; Jiang J; Shi Y; Zhong X; Gu J; Huangfu L; Gong M Front Neurosci; 2023; 17():1259652. PubMed ID: 37799340 [TBL] [Abstract][Full Text] [Related]
14. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
15. PICO entity extraction for preclinical animal literature. Wang Q; Liao J; Lapata M; Macleod M Syst Rev; 2022 Sep; 11(1):209. PubMed ID: 36180888 [TBL] [Abstract][Full Text] [Related]
16. Use of BERT (Bidirectional Encoder Representations from Transformers)-Based Deep Learning Method for Extracting Evidences in Chinese Radiology Reports: Development of a Computer-Aided Liver Cancer Diagnosis Framework. Liu H; Zhang Z; Xu Y; Wang N; Huang Y; Yang Z; Jiang R; Chen H J Med Internet Res; 2021 Jan; 23(1):e19689. PubMed ID: 33433395 [TBL] [Abstract][Full Text] [Related]
17. exKidneyBERT: a language model for kidney transplant pathology reports and the crucial role of extended vocabularies. Yang T; Sucholutsky I; Jen KY; Schonlau M PeerJ Comput Sci; 2024; 10():e1888. PubMed ID: 38435545 [TBL] [Abstract][Full Text] [Related]
18. MT-clinical BERT: scaling clinical information extraction with multitask learning. Mulyar A; Uzuner O; McInnes B J Am Med Inform Assoc; 2021 Sep; 28(10):2108-2115. PubMed ID: 34333635 [TBL] [Abstract][Full Text] [Related]
19. Identifying Patient Populations in Texts Describing Drug Approvals Through Deep Learning-Based Information Extraction: Development of a Natural Language Processing Algorithm. Gendrin A; Souliotis L; Loudon-Griffiths J; Aggarwal R; Amoako D; Desouza G; Dimitrievska S; Metcalfe P; Louvet E; Sahni H JMIR Form Res; 2023 Jun; 7():e44876. PubMed ID: 37347514 [TBL] [Abstract][Full Text] [Related]
20. BioBERT and Similar Approaches for Relation Extraction. Bhasuran B Methods Mol Biol; 2022; 2496():221-235. PubMed ID: 35713867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]