These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37203658)

  • 1. Low Valence Low Arousal Stimuli: An Effective Candidate for EEG-Based Biometrics Authentication System.
    Jeswani J; Govarthan PK; Selvaraj A; Prince A; Thomas J; Kalathe M; Subramaniam V; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():257-261. PubMed ID: 37203658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DSE-Mixer: A pure multilayer perceptron network for emotion recognition from EEG feature maps.
    Lin K; Zhang L; Cai J; Sun J; Cui W; Liu G
    J Neurosci Methods; 2024 Jan; 401():110008. PubMed ID: 37967671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based emotion classification using LSTM under new paradigm.
    Ahmed MZI; Sinha N
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34534973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of acute high altitude hypoxia on EEG power in different emotional states].
    Chen Z; Zhang GB; Zhou D; Cheng X; Zhu LL; Fan M; Wang DM; Zhao YQ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2020 Nov; 36(6):556-561. PubMed ID: 33719257
    [No Abstract]   [Full Text] [Related]  

  • 6. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
    Ramzan M; Dawn S
    Int J Neurosci; 2023 Jun; 133(6):587-597. PubMed ID: 34121598
    [No Abstract]   [Full Text] [Related]  

  • 7. Decoding the neural signatures of valence and arousal from portable EEG headset.
    Garg N; Garg R; Anand A; Baths V
    Front Hum Neurosci; 2022; 16():1051463. PubMed ID: 36561835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis.
    Khan MS; Salsabil N; Alam MGR; Dewan MAA; Uddin MZ
    Sci Rep; 2022 Aug; 12(1):14122. PubMed ID: 35986065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel signal to image transformation and feature level fusion for multimodal emotion recognition.
    Hatipoglu Yilmaz B; Kose C
    Biomed Tech (Berl); 2021 Aug; 66(4):353-362. PubMed ID: 33823091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Personalized User Authentication System Based on EEG Signals.
    Stergiadis C; Kostaridou VD; Veloudis S; Kazis D; Klados MA
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals.
    Wu Q; Zeng Y; Zhang C; Tong L; Yan B
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29364848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals.
    Maheshwari D; Ghosh SK; Tripathy RK; Sharma M; Acharya UR
    Comput Biol Med; 2021 Jul; 134():104428. PubMed ID: 33984749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review on EEG-Based Authentication Technology.
    Zhang S; Sun L; Mao X; Hu C; Liu P
    Comput Intell Neurosci; 2021; 2021():5229576. PubMed ID: 34976039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG Feature Extraction and Data Augmentation in Emotion Recognition.
    Kalashami MP; Pedram MM; Sadr H
    Comput Intell Neurosci; 2022; 2022():7028517. PubMed ID: 35387250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM).
    Algarni M; Saeed F; Al-Hadhrami T; Ghabban F; Al-Sarem M
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature selection for multimodal emotion recognition in the arousal-valence space.
    Torres CA; Orozco ÁA; Álvarez MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4330-3. PubMed ID: 24110691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G
    Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition.
    Xefteris VR; Tsanousa A; Georgakopoulou N; Diplaris S; Vrochidis S; Kompatsiaris I
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.