BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37204470)

  • 21. Functionalized iron oxide nanoparticles: synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications.
    Al-Harbi LM; Darwish MSA
    Heliyon; 2022 Jun; 8(6):e09654. PubMed ID: 35711994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative damage to β
    Poliansky NB; Motyakin MV; Kasparov VV; Novikov IA; Muranov KO
    Biophys Chem; 2023 Mar; 294():106963. PubMed ID: 36716683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-Free Iron Oxide Nanoparticles as Multimodal Contrast Agents in Cells Using Multi-Photon and Magnetic Resonance Imaging.
    Reynders H; Van Zundert I; Silva R; Carlier B; Deschaume O; Bartic C; Rocha S; Basov S; Van Bael MJ; Himmelreich U; Verbiest T; Zamora A
    Int J Nanomedicine; 2021; 16():8375-8389. PubMed ID: 35002233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L.
    Irum S; Jabeen N; Ahmad KS; Shafique S; Khan TF; Gul H; Anwaar S; Shah NI; Mehmood A; Hussain SZ
    PLoS One; 2020; 15(12):e0242829. PubMed ID: 33259506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphonate coating of commercial iron oxide nanoparticles for nanowarming cryopreserved samples.
    Pasek-Allen JL; Wilharm RK; Gao Z; Pierre VC; Bischof JC
    J Mater Chem B; 2022 May; 10(19):3734-3746. PubMed ID: 35466332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assay Development for Metal-Dependent Enzymes-Influence of Reaction Buffers on Activities and Kinetic Characteristics.
    Forero N; Liu C; Sabbah SG; Loewen MC; Yang TC
    ACS Omega; 2023 Oct; 8(43):40119-40127. PubMed ID: 37929113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmable Assembly of Iron Oxide Nanoparticles Using DNA Origami.
    Meyer TA; Zhang C; Bao G; Ke Y
    Nano Lett; 2020 Apr; 20(4):2799-2805. PubMed ID: 32208663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy.
    Wu L; Wang C; Li Y
    Nanomedicine (Lond); 2022 Sep; 17(21):1567-1583. PubMed ID: 36458585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI.
    Girard OM; Ramirez R; McCarty S; Mattrey RF
    Contrast Media Mol Imaging; 2012; 7(4):411-7. PubMed ID: 22649047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polymeric biocompatible iron oxide nanoparticles labeled with peptides for imaging in ovarian cancer.
    Shahdeo D; Roberts A; Kesarwani V; Horvat M; Chouhan RS; Gandhi S
    Biosci Rep; 2022 Feb; 42(2):. PubMed ID: 35103283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Synthesis and Characterization of L-Aspartic Acid Coated Iron Oxide Magnetic Nanoparticles (IONPs) For Biomedical Applications.
    Salehiabar M; Nosrati H; Davaran S; Danafar H; Manjili HK
    Drug Res (Stuttg); 2018 May; 68(5):280-285. PubMed ID: 29036735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
    Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S
    Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Iron Oxide Nanoparticles on the Oxidation and Secondary Structure of Growth Hormone.
    Varkhede N; Peters BH; Wei Y; Middaugh CR; Schöneich C; Forrest ML
    J Pharm Sci; 2019 Oct; 108(10):3372-3381. PubMed ID: 31216451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of Iron Oxide Nanoparticles with Macrophages Is Influenced Distinctly by "Self" and "Non-Self" Biological Identities.
    Portilla Y; Mulens-Arias V; Daviu N; Paradela A; Pérez-Yagüe S; Barber DF
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):35906-35926. PubMed ID: 37478159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interactions of gallium with various buffers and chelating agents in aqueous solution: gallium-71 and hydrogen-1 NMR studies.
    Chang CH; Pitner TP; Lenkinski RE; Glickson JD
    Bioinorg Chem; 1978; 8(1):11-9. PubMed ID: 23867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Versatility of Pyridoxal Phosphate as a Coating of Iron Oxide Nanoparticles.
    Bonvin D; Aschauer UJ; Bastiaansen JAM; Stuber M; Hofmann H; Mionić Ebersold M
    Nanomaterials (Basel); 2017 Jul; 7(8):. PubMed ID: 28758913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risk assessment of iron oxide nanoparticles in an aquatic ecosystem: A case study on Biomphalaria glabrata.
    Caixeta MB; Araújo PS; Rodrigues CC; Gonçalves BB; Araújo OA; Bevilaqua GB; Malafaia G; Silva LD; Rocha TL
    J Hazard Mater; 2021 Jan; 401():123398. PubMed ID: 32763694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Iron Oxide Surface Chemistry: Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives.
    Korpany KV; Majewski DD; Chiu CT; Cross SN; Blum AS
    Langmuir; 2017 Mar; 33(12):3000-3013. PubMed ID: 28215075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.