These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37204577)
21. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. Mehmood T; Gaurav GK; Cheng L; Klemeš JJ; Usman M; Bokhari A; Lu J J Environ Manage; 2021 Sep; 294():113108. PubMed ID: 34218074 [TBL] [Abstract][Full Text] [Related]
22. Influence of urban runoff pollutant first flush strength on bioretention pollutant removal performance. Zhang W; Tao K; Sun H; Che W Water Sci Technol; 2022 Sep; 86(6):1478-1495. PubMed ID: 36178818 [TBL] [Abstract][Full Text] [Related]
23. Bioretention cell age and construction style influence stormwater pollutant dynamics. Costello DM; Hartung EW; Stoll JT; Jefferson AJ Sci Total Environ; 2020 Apr; 712():135597. PubMed ID: 31791787 [TBL] [Abstract][Full Text] [Related]
24. Organics removal and microbial interaction attributes of zeolite and ceramsite assisted bioretention system in copper-contaminated stormwater treatment. Mehmood T; Lu J; Liu C; Gaurav GK J Environ Manage; 2021 Aug; 292():112654. PubMed ID: 33971541 [TBL] [Abstract][Full Text] [Related]
25. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Lucke T; Nichols PWB Sci Total Environ; 2015 Dec; 536():784-792. PubMed ID: 26254078 [TBL] [Abstract][Full Text] [Related]
26. Effects of freeze-thaw cycles on nutrient removal from bioretention cells. Zhou J; Xiong J; Zhu J; Xie X; Ni J; Liu Y; Wang X J Environ Manage; 2023 Jan; 325(Pt B):116556. PubMed ID: 36283173 [TBL] [Abstract][Full Text] [Related]
27. Water quality improvement through bioretention: lead, copper, and zinc removal. Davis AP; Shokouhian M; Sharma H; Minami C; Winogradoff D Water Environ Res; 2003; 75(1):73-82. PubMed ID: 12683466 [TBL] [Abstract][Full Text] [Related]
28. [Urban Runoff Phosphorus Removal Pathways in Bioretention Systems]. Li LQ; Liu YQ; Yang JM; Wang J Huan Jing Ke Xue; 2018 Jul; 39(7):3150-3157. PubMed ID: 29962138 [TBL] [Abstract][Full Text] [Related]
29. Effect of carbaryl contamination on bioretention system nitrogen removal performance. Tong H; Xiong J Environ Sci Pollut Res Int; 2024 Sep; 31(44):56227-56235. PubMed ID: 39259329 [TBL] [Abstract][Full Text] [Related]
30. Phosphorus speciation and treatment using enhanced phosphorus removal bioretention. Liu J; Davis AP Environ Sci Technol; 2014; 48(1):607-14. PubMed ID: 24313712 [TBL] [Abstract][Full Text] [Related]
31. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff. Lopez-Ponnada EV; Lynn TJ; Ergas SJ; Mihelcic JR Water Res; 2020 Mar; 170():115336. PubMed ID: 31841771 [TBL] [Abstract][Full Text] [Related]
32. Modeling multi-year phosphorus dynamics in a bioretention cell: Phosphorus partitioning, accumulation, and export. Zhou B; Shafii M; Parsons CT; Passeport E; Rezanezhad F; Lisogorsky A; Van Cappellen P Sci Total Environ; 2023 Jun; 876():162749. PubMed ID: 36906029 [TBL] [Abstract][Full Text] [Related]
33. Water quality improvement through bioretention media: nitrogen and phosphorus removal. Davis AP; Shokouhian M; Sharma H; Minami C Water Environ Res; 2006 Mar; 78(3):284-93. PubMed ID: 16629269 [TBL] [Abstract][Full Text] [Related]
34. Hydrology and rainfall runoff pollutant removal performance of biochar-amended bioretention facilities based on field-scale experiments in lateritic red soil regions. Mai Y; Huang G Sci Total Environ; 2021 Mar; 761():143252. PubMed ID: 33183819 [TBL] [Abstract][Full Text] [Related]
35. Purification effects of amended bioretention columns on phosphorus in urban rainfall runoff. Li J; Li L; Dong W; Li H Water Sci Technol; 2018 Dec; 78(9):1937-1945. PubMed ID: 30566097 [TBL] [Abstract][Full Text] [Related]
36. Nitrogen removal performance in roadside stormwater bioretention cells amended with drinking water treatment residuals. Betz C; Ament MR; Hurley SE; Roy ED J Environ Qual; 2023; 52(6):1115-1126. PubMed ID: 37573476 [TBL] [Abstract][Full Text] [Related]
37. Enhancing bioretention efficiency for pollutant mitigation in stormwater runoff: Exploring ecosystem cycling dynamics amidst temporal variability. Chen F; Zhang Q; Zheng G; Shen X; Xue Z; Zhang M; Li R; Wang Y Bioresour Technol; 2024 Jun; 402():130827. PubMed ID: 38734258 [TBL] [Abstract][Full Text] [Related]
38. The fate of three typical persistent organic pollutants in bioretention columns as revealed by stable carbon isotopes. Duan X; Li J; Li Y Chemosphere; 2023 Sep; 334():138996. PubMed ID: 37211166 [TBL] [Abstract][Full Text] [Related]
39. Multi-media interaction improves the efficiency and stability of the bioretention system for stormwater runoff treatment. Kong Z; Song Y; Xu M; Yang Y; Wang X; Ma H; Zhi Y; Shao Z; Chen L; Yuan Y; Liu F; Xu Y; Ni Q; Hu S; Chai H Water Res; 2024 Feb; 250():121017. PubMed ID: 38118254 [TBL] [Abstract][Full Text] [Related]
40. Nitrogen removal from urban stormwater runoff through layered bioretention columns. Hsieh CH; Davis AP; Needelman BA Water Environ Res; 2007 Nov; 79(12):2404-11. PubMed ID: 18044357 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]