These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37204910)

  • 1. Collective Flows Drive Cavitation in Spinner Monolayers.
    Shen Z; Lintuvuori JS
    Phys Rev Lett; 2023 May; 130(18):188202. PubMed ID: 37204910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active turbulence in a gas of self-assembled spinners.
    Kokot G; Das S; Winkler RG; Gompper G; Aranson IS; Snezhko A
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12870-12875. PubMed ID: 29158382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconfigurable structure and tunable transport in synchronized active spinner materials.
    Han K; Kokot G; Das S; Winkler RG; Gompper G; Snezhko A
    Sci Adv; 2020 Mar; 6(12):eaaz8535. PubMed ID: 32219171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic Interactions Can Induce Jamming in Flow-Driven Systems.
    Cereceda-López E; Lips D; Ortiz-Ambriz A; Ryabov A; Maass P; Tierno P
    Phys Rev Lett; 2021 Nov; 127(21):214501. PubMed ID: 34860099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement of surface spinners in liquid metamaterials.
    Gorce JB; Xia H; Francois N; Punzmann H; Falkovich G; Shats M
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25424-25429. PubMed ID: 31801882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation dynamics of active rotating particles in dense passive media.
    Aragones JL; Steimel JP; Alexander-Katz A
    Soft Matter; 2019 May; 15(19):3929-3937. PubMed ID: 31011735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Phase Crystallization in a Carpet of Inertial Spinners.
    Shen Z; Lintuvuori JS
    Phys Rev Lett; 2020 Nov; 125(22):228002. PubMed ID: 33315446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coarsening dynamics of binary liquids with active rotation.
    Sabrina S; Spellings M; Glotzer SC; Bishop KJ
    Soft Matter; 2015 Nov; 11(43):8409-16. PubMed ID: 26345231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic self-assembly of active colloids: chiral spinners and dynamic crystals.
    Shen Z; Würger A; Lintuvuori JS
    Soft Matter; 2019 Feb; 15(7):1508-1521. PubMed ID: 30672958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interactions hinder transport of flow-driven colloidal particles.
    Lips D; Cereceda-López E; Ortiz-Ambriz A; Tierno P; Ryabov A; Maass P
    Soft Matter; 2022 Dec; 18(47):8983-8994. PubMed ID: 36383199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active spheres induce Marangoni flows that drive collective dynamics.
    Wittmann M; Popescu MN; Domínguez A; Simmchen J
    Eur Phys J E Soft Matter; 2021 Mar; 44(2):15. PubMed ID: 33683489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer.
    Fan J; Luo K; Zheng Y; Jin H; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036309. PubMed ID: 14524892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong vortical flows generated by the collective motion of magnetic particle chains rotating in a fluid cell.
    Gao Y; Beerens J; van Reenen A; Hulsen MA; de Jong AM; Prins MW; den Toonder JM
    Lab Chip; 2015 Jan; 15(1):351-60. PubMed ID: 25380482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid flows created by swimming bacteria drive self-organization in confined suspensions.
    Lushi E; Wioland H; Goldstein RE
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9733-8. PubMed ID: 24958878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls.
    Kohale SC; Khare R
    J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phoretic and hydrodynamic interactions of weakly confined autophoretic particles.
    Kanso E; Michelin S
    J Chem Phys; 2019 Jan; 150(4):044902. PubMed ID: 30709320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit.
    Zhang J; Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex formation of spherical self-propelled particles around a circular obstacle.
    Pan JX; Wei H; Qi MJ; Wang HF; Zhang JJ; Tian WD; Chen K
    Soft Matter; 2020 Jun; 16(23):5545-5551. PubMed ID: 32510067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jamming of particles in a two-dimensional fluid-driven flow.
    Guariguata A; Pascall MA; Gilmer MW; Sum AK; Sloan ED; Koh CA; Wu DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061311. PubMed ID: 23367936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective excitations of hydrodynamically coupled driven colloidal particles.
    Nagar H; Roichman Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042302. PubMed ID: 25375489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.